Skip to main content
Log in

The Effect of Dimethylsulfoxide (or Diethylsulfoxide) on Methylene Blue-Calf Thymus DNA Binding in Aqueous Solutions by Fluorescence Polarization and Steady-State Fluorescence Quenching

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The detailed study of the effect of dimethylsulfoxide (or diethylsulfoxide) on interaction between methylene blue (MB) and calf thymus DNA was performed at 293.15 K using steady-state fluorescence quenching and fluorescence polarization. The combination of steady-state fluorescence quenching and fluorescence polarization reveal the main binding modes at different concentrations of DNA and the effect of sulfoxides on binding mechanism. For comparison, the other polar solvents such as N,N-dimethyl formamide and acetonitrile were used. From Stern–Volmer equation, the values of binding constant and standard Gibbs free energy change were determined. At low concentrations of DNA with addition of various organic cosolvents, the binding constant of DNA–MB complex decreases indicating that hydrogen bonds are predominant, and thus, the main binding mode is groove binding. At high concentrations of DNA, the binding mechanism changes and intercalation becomes the main binding mode in all solutions. Addition of cosolvents distorts the groove binding and, as a result, weakens the intercalation between MB and base pairs of double-stranded DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

There are no available data and materials.

References

  1. Kumar, C.V., Asuncion, E.H.: DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J. Am. Chem. Soc. 115, 8547–8553 (1993)

    Article  CAS  Google Scholar 

  2. Rohs, R., Sklenar, H., Lavery, R., Rolder, B.: Methylene blue binding to DNA with alternating GC base sequence: a modeling study. J. Am. Chem. Soc. 122, 2860–2866 (2000)

    Article  CAS  Google Scholar 

  3. Tong, C., Hu, Z., Wu, J.: Interaction between methylene blue and calf thymus deoxyribonucleic acid by spectroscopic technologies. J. Fluoresc. 20, 261–267 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. Patrick, G.L.: Introduction to Medicinal Chemistry, 5th edn. Oxford University Press, Oxford (2013)

    Google Scholar 

  5. Usacheva, M.N., Teichert, M.C., Biel, M.A.: The role of the methylene blue and toluidine blue monomers and dimmers in the photoinactivation of bacteria. J. Photochem. Photobiol. B 71, 87–98 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. Orth, K., Beck, G., Genze, F., Ruck, A.: Methylene blue mediated photodynamic therapy in experimental colorectal tumors in mice. J. Photochem. Photobiol. B 57, 186–192 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. Tuite, E.M., Kelly, J.M.: New trends in photobiology: photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J. Photochem. Photobiol. B 21, 103–124 (1993)

    Article  CAS  PubMed  Google Scholar 

  8. Raffaelli, A., Pucci, S., Desideri, I., Bellina, C.R., Bianchi, R., Salvadori, P.: Investigation on the iodination reaction of methylene blue by liquid chromatography–mass spectrometry with ionspray ionization. J. Chromatogr. A 854, 57–67 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Bale, M.J., Yang, C., Pfaller, M.A.: Evaluation of growth characteristics on blood agar and eosin methylene blue agar for the identification of Candida (Torulopsis) glabrata. Diagn. Microbiol. Infect. Dis. 28, 65–67 (1997)

    Article  CAS  PubMed  Google Scholar 

  10. Rohs, R., Sklenar, H.: Methylene blue binding to DNA with Alternating AT base sequence: minor groove binding is favored over intercalation. J. Biomol. Struct. Dyn. 21, 699–711 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. Lima, G.A.S., Guerini, G.G., de Vasconcellos, S.P., Pellosi, D.S.: Visible light-induced synergic antimicrobial activity of silver nanoparticles/methylene blue nanohybrids encapsulated in chitosan and pluronic polymers. Chem. Pap. (2022). https://doi.org/10.1007/s11696-022-02509-1

    Article  Google Scholar 

  12. Zhang, K., Zhang, X., Sun, H., Li, X., Bai, J., Du, Q., Li, C.: Modulated photoluminescence and photodynamic efficiency of hydroxyapatite-methylene blue@carbon-ions by ion-π coupling interactions. Colloids Surf. A Physicochem. Eng. Asp. 634, 127927 (2022)

    Article  CAS  Google Scholar 

  13. Britos, L., Goyenola, G., Orono, S.U.: Simple protocol for secondary school hands-on activity - Electrophoresis of pre-stained nucleic acids on agar-agar borate gels. Biochem. Mol. Biol. Educ. 32, 341–347 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Vardevanyan, P.O., Antonyan, A.P., Parsadanyan, M.A., Shahinyan, M.A., Petrosyan, N.H.: Study of interaction of methylene blue with DNA and albumin. J. Biomol. Struct. Dyn. 40(17), 7779–7785 (2022)

    Article  CAS  PubMed  Google Scholar 

  15. Kumar, M., Kaushik, M., Kukreti, S.: Interaction of a photosensitizer methylene blue with various structural forms (cruciform, bulge duplex and hairpin) of designed DNA sequences. Spectrochim. Acta A 242, 118716 (2020)

    Article  CAS  Google Scholar 

  16. Mudasir, W.E.T., Tjahjono, D.H., Yoshioka, N., Inoue, H.: Spectroscopic studies on the thermodynamic and thermal denaturation of the ct-DNA binding of methylene blue. Spectrochim. Acta A 77, 528–534 (2010)

    Article  CAS  Google Scholar 

  17. Hossain, M., Kumar, G.S.: DNA intercalation of methylene blue and quinacrine: new insights into base and sequence specificity from structural and thermodynamic studies with polynucleotides. Mol. BioSyst. 5, 1311–1322 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. Hajian, R., Shams, N., Mohagheghian, M.: Study on the Interaction between doxorubicin and deoxyribonucleic acid with the use of methylene blue as a probe. J. Braz. Chem. Soc. 20, 1399–1405 (2009)

    Article  CAS  Google Scholar 

  19. Zhang, L.Z., Tang, G.-Q.: The binding properties of photosensitizer methylene blue to herring sperm DNA: a spectroscopic study. J. Photochem. Photobiol. B 74, 119–125 (2004)

    Article  CAS  PubMed  Google Scholar 

  20. Hu, Z., Tong, C.: Synchronous fluorescence determination of DNA based on the interaction between methylene blue and DNA. Anal. Chim. Acta 587, 187–193 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. Shanmugam, S.T., Trashin, S., De Wael, K.: Singlet oxygen-based photoelectrochemical detection of DNA. Biosens Bioelectron. 195, 113652 (2022)

    Article  CAS  PubMed  Google Scholar 

  22. Shahinyan, G.A., Amirbekyan, AYu., Markarian, S.A.: Photophysical properties of methylene blue in water and in aqueous solutions of dimethylsulfoxide. Spectrochim. Acta A 217, 170–175 (2019)

    Article  CAS  Google Scholar 

  23. Tunç, S., Duman, O., Soylu, İ, Bozoğlan, K.: Spectroscopic investigation of the interactions of carbofuran and amitrol herbicides with human serum albumin. J. Lumin. 151, 22–28 (2014)

    Article  Google Scholar 

  24. Kancı Bozoğlan, B., Tunç, S., Duman, O.: Investigation of neohesperidin dihydrochalcone binding to human serum albumin by spectroscopic methods. J. Lumin. 155, 198–204 (2014)

    Article  Google Scholar 

  25. Ayranci, E., Duman, O.: Binding of fluoride, bromide and iodide to bovine serum albumin, studied with ion-selective electrodes. Food Chem. 84, 539–543 (2004)

    Article  CAS  Google Scholar 

  26. Xiao, M., Kwok, P.-Y.: DNA analysis by fluorescence quenching detection. Genome Res. 13, 932–939 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, Y.-B., Wang, D.-Y., Guo, X.-Q., Xu, J.-G.: Determination of DNA and RNA by their quenching effect on the fluorescence of the Tb3+-Tiron complex. Anal. Chim. Acta. 353, 329–335 (1997)

    Article  CAS  Google Scholar 

  28. Shahinyan, G.A., Dadayan, A.S., Hovhannisyan, N.A., Markarian, S.A.: Study of the interaction of novel nonprotein amino acids with trypsin by steady-state fluorescence spectroscopy. J. Fluoresc. 30, 229–233 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. Hegde, A.H., Prashanth, S.N., Seetharamappa, J.: Interaction of antioxidant flavonoids with calf thymus DNA analyzed by spectroscopic and electrochemical methods. J. Pharm. Biomed. Anal. 63, 40–46 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. Zare-Feizabadi, N., Amiri-Tehranizadeh, Z., Sharifi-Rad, A., Mokaberi, P., Nosrati, N., Hashemzadeh, F., Rahimi, H.R., Saberi, M.R., Chamani, J.: Determining the interaction behavior of calf thymus DNA with anastrozole in the presence of histone H1: Spectroscopies and cell viability of MCF-7 cell line investigations. DNA Cell Biol. 40(8), 1039–1051 (2021)

    Article  CAS  PubMed  Google Scholar 

  31. Dareini, M., Amiri-Tehranizadeh, Z., Marjani, N., Taheri, R., Aslani-Firoozabadi, S., Talebi, A., Eidgahi, N.N., Saberi, M.R., Chamani, J.: A novel view of the separate and simultaneous binding effects of docetaxel and anastrozole with calf thymus DNA: experimental and in silico approaches. Spectrochim. Acta A 228, 117528 (2020)

    Article  CAS  Google Scholar 

  32. Liang, S., He, G., Tian, J., Zhao, Y., Zhao, S.: Fluorescence polarization gene assay for HIV-DNA based on the use of dendrite-modified gold nanoparticles acting as signal amplifiers. Microchim. Acta 185(2), 119–126 (2018)

    Article  Google Scholar 

  33. Wang, L., Tian, J., Huang, Y., Lin, X., Yang, W., Zhao, Y., Zhao, S.: Homogenous fluorescence polarization assay for the DNA of HIV A T7 by exploiting exonuclease-assisted quadratic recycling amplification and the strong interaction between graphene oxide and ssDNA. Microchim. Acta 183, 2147–2153 (2016)

    Article  CAS  Google Scholar 

  34. Amirbekyan, KYu., Shahinyan, G.A., Ghazoyan, H.H., Sargsyan, H.R., Markarian, S.A.: Fluorescence anisotropy studies on the Hoechst 33258-DNA interaction: the solvent effect. J. Biomol. Struct. Dyn. 38, 4902–4906 (2020)

    Google Scholar 

  35. Górecki, M., Zinna, F., Biver, T., Di Bari, L.: Induced circularly polarized luminescence for revealing DNA binding with fluorescent dyes. J. Pharm. Biomed. Anal 144, 6–11 (2017)

    Article  PubMed  Google Scholar 

  36. Yu, Z.-W., Quinn, P.J.: Dimethyl sulphoxide: a review of its applications in cell biology. Biosci. Rep. 14, 259–281 (1994)

    Article  CAS  PubMed  Google Scholar 

  37. Jacob, S.W., Herschler, R.: Pharmacology of DMSO. Cryobiology 23, 14–27 (1986)

    Article  CAS  PubMed  Google Scholar 

  38. Markarian, S.A., Shahinyan, G.A.: The effect of dimethylsulfoxide on absorption and fluorescence spectra of aqueous solutions of acridine orange base. Spectrochim Acta A 151, 662–666 (2015)

    Article  CAS  Google Scholar 

  39. Markarian, S.A., Gabrielyan, L.S.: Dielectric relaxation study of diethylsulfoxide/water mixtures. Phys. Chem. Liq. 47, 311–321 (2007)

    Article  Google Scholar 

  40. Ghazoyan, H.H., Grigoryan, Z.L., Gabrielyan, L.S., Markarian, S.A.: Study of thermodynamic properties of binary mixtures of propionitrile with dimethylsulfoxide (or diethylsulfoxide) at temperatures from (298.15 to 323.15)K. J. Mol. Liq. 284, 147–156 (2019)

    Article  CAS  Google Scholar 

  41. Markarian, S.A., Terzyan, A.M.: Surface tension and refractive index of dialkylsulfoxide + water mixtures at several temperatures. J. Chem. Eng. Data 52, 1704–1709 (2007)

    Article  CAS  Google Scholar 

  42. Markarian, S.A., Asatryan, A.M., Zatikyan, A.L.: Volumetric properties of aqueous solutions of diethylsulfoxide at temperatures from 298.15 K to 343.15 K. J. Chem. Thermodyn. 37, 768–777 (2005)

    Article  CAS  Google Scholar 

  43. Markarian, S.A., Asatryan, A.M., Grigoryan, K.R., Sargsyan, H.R.: Effect of diethylsulfoxide on the thermal denaturation of DNA. Biopolymers 82, 1–5 (2006)

    Article  CAS  PubMed  Google Scholar 

  44. Torreggiani, A., Di Foggia, M., Manco, I., De Maio, A., Markarian, S.A., Bonora, S.: Effect of sulfoxides on the thermal denaturation of hen lysozyme: a calorimetric and Raman study. J. Mol. Struct. 891, 115–122 (2008)

    Article  CAS  Google Scholar 

  45. Markarian, S.A., Poladyan, A.A., Kirakosyan, G.R., Trchounian, A.A., Bagramyan, K.A.: Effect of diethylsulphoxide on growth, survival and ion exchange of Escherichia coli. Lett. Appl. Microbiol. 34, 417–421 (2002)

    Article  CAS  PubMed  Google Scholar 

  46. Markarian, S.A., Grigoryan, J.D., Sargsyan, H.R.: The spectrophotometric study of the binding of vitamin E to water + dimethyl sulfoxide and water + diethyl sulfoxide containing reversed micelles. Int. J. Pharm. 353, 52–55 (2008)

    Article  CAS  PubMed  Google Scholar 

  47. Markarian, S.A., Tadevosyan, N.: Method of Purification of Diethyl Sulfoxide, p. 20010041. Patent of Republic of Armenia, No (2002)

    Google Scholar 

  48. Lakowisz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn. Springer, New York (2006)

    Book  Google Scholar 

  49. Vardevanyan, P.O., Antonyan, A.P., Parsadanyan, M.A., Shahinyan, M.A., Hambardzumyan, L.A.: Mechanisms for binding between methylene blue and DNA. J. Appl. Spectrosc. 80, 595–599 (2013)

    Article  CAS  Google Scholar 

  50. Marjani, N., Dareini, M., Asadzade-Lotfabad, M., Pejhan, M., Mokaberi, P., Amiri-Tehranizadeh, Z., Saberi, M.R., Chamani, J.: Evaluation of the binding effect and cytotoxicity assay of 2-Ethyl-5-(4-methylphenyl) pyramido pyrazole ophthalazine trione on calf thymus DNA: spectroscopic, calorimetric, and molecular dynamics approaches. Luminescence 37(2), 310–322 (2022)

    Article  CAS  PubMed  Google Scholar 

  51. Bruker Almanac (2012) Analytical Tables and Product Overview. https://lsa.umich.edu/content/dam/chem-assets/chem-docs/BrukerAlmanac2011.pdf

  52. Bai, T.-C., Yau, J., Han, S.-J.: Excess molar volumes for binary and ternary mixtures of (N,N-dimethylformamide-ethanol-water) at the temperature 298.15 K. J. Chem. Thermodyn. 30, 1347–1361 (1998)

    Article  CAS  Google Scholar 

  53. Handa, Y.P., Benson, G.C.: Thermodynamics of aqueous mixtures of nonelectrolytes. IV. Excess Volumes of water-acetonitrile mixtures from 15 to 35 °C. J. Solution Chem. 10, 291–300 (1981)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Science Committee of RA, in the frames of the research project № 21T‐1D026.

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

SAM contributed to the objectives of the problems and explanation of obtained results. HHG contributed to explanation of obtained results. GAS contributed to experiments and explanation of obtained results. All authors reviewed the manuscript.

Corresponding author

Correspondence to Shiraz A. Markarian.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This declaration is “not applicable.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahinyan, G.A., Ghazoyan, H.H. & Markarian, S.A. The Effect of Dimethylsulfoxide (or Diethylsulfoxide) on Methylene Blue-Calf Thymus DNA Binding in Aqueous Solutions by Fluorescence Polarization and Steady-State Fluorescence Quenching. J Solution Chem 52, 708–719 (2023). https://doi.org/10.1007/s10953-023-01263-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01263-6

Keywords

Navigation