Skip to main content
Log in

Measurement and Correlation of Isobaric Vapor–Liquid Equilibrium Data for n-Hexane, Methylcyclopentane and N,N-Dimethylamide Systems at 101.3 kPa

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Isobaric vapor–liquid phase equilibrium (VLE) data for binary systems of n-hexane + methylcyclopentane, n-hexane + N,N-dimethylamide (DMF), methylcyclopentane + DMF and ternary system of n-hexane + methylcyclopentane + DMF were generated using a modified Rose still at 101.3 kPa. The thermodynamic consistency for the VLE data were confirmed by the Wisniak’s test. Binary interaction parameters (BIPs) were obtained on the calculation of VLE for these binary systems by Wilson, NRTL and UNIQUAC activity coefficient models. The estimation values of the three models showed a good fit with the experimental data. The BIPs were also employed to predict the Txy data of ternary system n-hexane + methylcyclopentane + DMF. The results presented a favorable match between experimental data and the predicted values. The yx diagram of methylcyclopentane + n-hexane system was plotted with or without DMF, which confirmed that DMF as a extractant has a remarkable effect on the extractive distillation of these two components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. Schaumburg, H.H., Spencer, P.S.: Degeneration in central and peripheral nervous systems produced by pure n-hexane: an experimental study. Brain A 99, 183–192 (1976)

    Article  CAS  Google Scholar 

  2. Meher, L.C., Dharmagadda, V.S.S., Naik, S.N.: Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Biores. Technol. 97, 1392–1397 (2006)

    Article  CAS  Google Scholar 

  3. Sayyar, S., Abidin, Z.Z., Yunus, R.: Extraction of oil from Jatropha seeds-optimization and kinetics. Am. J. Appl. Sci. 6, 1390–1395 (2009)

    Article  Google Scholar 

  4. Yan, X.W.: Purification Process of Industrialization Preparation of Pesticide Residue Grade n-Hexane. Beijing University of Chemical Technology, Beijing (2012)

    Google Scholar 

  5. Wang, L.H.: Evaluation of Edible Vegetable Oil Leaching Solvent and Solvent Residue Detection Method. Suzhou University, Suzhou (2013)

    Google Scholar 

  6. Cheng, N.L.: Solvent Handbook, 4th edn. Chemical Industry Press, Beijing (2010)

    Google Scholar 

  7. Lin, J., Gu, Z.G., Si, L.: Simulation calculation and small test of extractive distillation separation of n-hexane methylcyclopentane. Chem. Ind. Eng. 17, 103–105, 115 (2000)

  8. Shan, X.J., Gao, S., Wei, S.H.: Separation of n-hexane from 6# solvent oil. Gansu Pet. Chem. Ind. 3, 25–31 (2010)

    Google Scholar 

  9. Zhao, Y.J., Cheng, Y.: Preparation of high purity n-hexane. Chem. Reagents. 21, 54–55 (1999)

    CAS  Google Scholar 

  10. Jia, P.F., Tang, H.D., Liang, D.Q.: Production process of high purity n-hexane. Tianjin Chem. Ind. 30, 44–45 (2016)

    Google Scholar 

  11. Lei, Z.G., Li, C.Y., Chen, B.H.: Extractive distillation: a review. Sep. Purif. Rev. 32, 121–213 (2003)

    Article  CAS  Google Scholar 

  12. Zhang, Y., Xu, X., Yang, H.: Separation of azeotropic mixture isopropyl alcohol + ethyl acetate by extractive distillation: Vapor-liquid equilibrium measurements and interaction exploration. Fluid Phase Equilib. 507, 112428 (2020)

    Article  CAS  Google Scholar 

  13. Li, R., Meng, X.L., Liu, X.W.: Separation of azeotropic mixture (2, 2, 3, 3-tetrafluoro-1-propanol + water) by extractive distillation: entrainers selectionand vapour-liquid equilibrium measurements. J. Chem. Thermodyn. 138, 205–210 (2019)

    Article  CAS  Google Scholar 

  14. Fischer, K., Gmehling, J.: Vapor–liquid equilibria, activity coefficients at infinite dilution and heats of mixing for mixtures of N-methyl pyrrolidone-2 with C5 or C6 hydrocarbons and for hydrocarbon mixtures. Fluid Phase Equilib. 119, 113–130 (1996)

    Article  CAS  Google Scholar 

  15. Gierycz, P., Rogalski, M., Malanowski, S.: Vapor-liquid equilibria in binary systems formed by N-methylpyrrolidone with hydrocarbons and hydroxyl derivatives. Fluid Phase Equilib. 22, 107–122 (1985)

    Article  CAS  Google Scholar 

  16. H.S. Myers, equilibrium for naphthenes and paraffins. Petroleum Refiner. 36(3), 175–8 V-l (1957)

  17. Ehrett, W.E., Weber, J.H.: Vapor–liquid equilibria at atmospheric and subatmospheric pressures for system n-hexane-methylcxyclopentane. J. Chem. Eng. Data 4, 142 (1959)

    Article  CAS  Google Scholar 

  18. Dojcansky, J., Revus, M., Surovy, J., Marecek, V.: Influence of N-methylpyrrolidinone on relative volatility hexane and benzene. Ropa Uhlie. 22, 236 (1980)

    Google Scholar 

  19. Min, L., Yingmin, Y., Lili, Z., Jun, L., Yuhe, S.: Isobaric binary and ternary vapor-liquid equilibrium for the mixture of n-hexane, methylcyclopentane and N-methylpyrrolidone. J. Solution Chem. 50, 1258–1284 (2021)

    Article  Google Scholar 

  20. Blanco, B., Beltran, S., Cabezas, J.L., Coca, J.: Phase equilibria of binary systems formed by hydrocarbons from petroleum fractions and the solvents N-methylpyrrolidone and N, N-dimethylformamide. 1. Isobaric vapor-liquid equilibria. J. Chem. Eng. Data 42(5), 938–942 (1997)

    Article  CAS  Google Scholar 

  21. Sunder, M.S., Prasad, D.H.L.: Vapor-liquid equilibrium and excess gibbs energies of hexane + N, N-dimethyl formamide, 2-methylpropan-2-ol + 2-aminophenol, N, N-dimethyl formamide, and 2-propanol + diisopropyl amine at 944 kPa. J. Chem. Eng. Data 52(5), 2050–2052 (2007)

    Article  CAS  Google Scholar 

  22. Wisniak, J., Ortega, J., Fernández, L.: A fresh look at the thermodynamic consistency of vapour–liquid equilibria data. J. Chem. Thermodyn. 105, 385–395 (2017)

    Article  CAS  Google Scholar 

  23. Wisniak, J.: A new test for the thermodynamic consistency of vapor–liquid equilibrium. Ind. Eng. Chem. Res. 32, 1531–1533 (1993)

    Article  CAS  Google Scholar 

  24. Lei, Z.G., Wang, H.Y., Zhou, R.Q.: Influence of salt added to solvent on extractive distillation. Chem. Eng. J. 87, 149–156 (2002)

    Article  CAS  Google Scholar 

  25. Li, Y., Xu, C.: Improving the dynamic performance of entrainer-assisted pressure-swing distillation: control modes of the recycling or connecting stream and application of high-selectors. Ind. Eng. Chem. Res. 58, 9512–9525 (2019)

    Article  CAS  Google Scholar 

  26. You, X.Q., Ma, T.J., Qiu, T.: Design and optimization of sustainable pressure swing distillation for minimum-boiling azeotrope separation. Ind. Eng. Chem. Res. 58, 21659–21670 (2019)

    Article  CAS  Google Scholar 

  27. Klamt, A., Thormann, M., Wichmann, K.: COSMOsar3D: molecular field analysis based on local COSMO σ-profiles. J. Chem. Inf. Model. 52(8), 2157–2164 (2012)

    Article  CAS  PubMed  Google Scholar 

  28. Prausnitz, J.M.: Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice-Hall, Englewood Cliffs (1969)

    Google Scholar 

  29. Peng, X.W.: Calculation method of component fugacity coefficients based on SRK series equations of state. Comput. Appl. Chem. 33, 110–113 (2016)

    Google Scholar 

  30. Jaime, W., Juan, O., Luis, F.: A fresh look at the thermodynamic consistency of vapour-liquid equilibria data. J. Chem. Thermodyn. 105, 385–395 (2017)

    Article  Google Scholar 

  31. Jaime, W.: A new test for the thermodynamic consistency of vapor-liquid equilibrium. Ind. Eng. Chem. Res. 32, 1531–1533 (1993)

    Article  Google Scholar 

  32. Liu, K., Zhang, T., Ma, Y.X.: Vapour–liquid equilibrium measurements and correlation for separating azeotropic mixture (ethyl acetate + n-heptane) by extractive distillation. J. Chem. Thermodyn. 144, 106075 (2020)

    Article  CAS  Google Scholar 

  33. Ma, Y.X., Gao, J., Li, M.: Isobaric vapour-liquid equilibrium measurements and extractive distillation process for the azeotrope of (N, N-dimethylisopropylamine+ acetone). J. Chem. Thermodyn. 122, 154–161 (2018)

    Article  CAS  Google Scholar 

  34. Shi, P.Y., Gao, Y.C., Wu, J.Y.: Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol + water): Isobaric vapour−liquid phase equilibrium measurements and azeotropic distillation. J. Chem. Thermodyn. 118, 139–146 (2018)

    Article  Google Scholar 

  35. Zhang, Y., Wang, Z.J., Xu, X.: Entrainers selection and vapour-liquid equilibrium measurements for separating azeotropic mixtures (ethanol + n-hexane/cyclohexane) byextractive distillation. J. Chem. Thermodyn. 144, 106070 (2020)

    Article  CAS  Google Scholar 

  36. Mathias, P.M.: Guidelines for the analysis of vapor−liquid equilibrium data. J. Chem. Thermodyn. 62, 2231–2233 (2017)

    CAS  Google Scholar 

  37. Mathias, P.M.: Effect of VLE uncertainties on the design of separation sequences by distillation—study of the benzene−chloroform−acetone system. Fluid Phase Equilib. 408, 265–272 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of Shandong Province (China, Grant No. ZR2020MB12), and supported by State Key Laboratory of Heavy Oil Processing and Chambroad Chemical Industry Research Institute (SKLHOP202101007).

Author information

Authors and Affiliations

Authors

Contributions

YY: writing—original draft, validation, visualization, investigation, software; ML: data curation, formal analysis, investigation; LZ: data curation, formal analysis, investigation; XZ: data curation, formal analysis, investigation; LY: conceptualization, methodology, supervision.

Corresponding author

Correspondence to Yingmin Yu.

Ethics declarations

Competing interests

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Li, M., Zhang, L. et al. Measurement and Correlation of Isobaric Vapor–Liquid Equilibrium Data for n-Hexane, Methylcyclopentane and N,N-Dimethylamide Systems at 101.3 kPa. J Solution Chem 52, 615–638 (2023). https://doi.org/10.1007/s10953-023-01257-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01257-4

Keywords

Navigation