Skip to main content
Log in

A Thermodynamic Model for Nd(III)–Sulfate Interaction at High Ionic Strengths and Elevated Temperatures: Applications to Rare Earth Element Extraction

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Neodymium (Nd), a rare earth element (REE), is critical to numerous industries. Neodymium can be extracted from ore concentrates, waste materials, or recycled materials such as recycled Nd-Fe-B permanent magnets. In a standard process, concentrated sulfuric acid (H2SO4) is used as an extraction/leaching agent. Therefore, knowledge of Nd(III)–sulfate interaction at high ionic strengths is important for optimization of the extraction process. In addition, sulfate is also a major species in natural surface waters and present in nuclear waste streams. Nd(III) has been used a chemical analog to trivalent actinides in nuclear waste research and development. Consequently, knowledge of Nd(III)-sulfate interactions is also impactful to the field of nuclear waste management. In this study, we have developed a thermodynamic model that can describe the interaction of Nd(III) with sulfate to ionic strengths up to ~ 16.5 mol·kg–1 and to temperatures up to 100 °C. The model adopts the Pitzer formulation to describe activity coefficients of aqueous species. This model can be used to design and optimize a chemical process for REE recovery from ore concentrates, recycled materials, and acid mine drainage (AMD) and to understand the mobility of REEs and actinides in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xiong, Y.-L., Wang, Y.-F.: Experimental and modeling studies of Pr and Nd oxalate solubility to high ionic strengths: insight into actinide (III) oxalates. Chem. Geol. 573, 120200 (2021)

    Article  CAS  Google Scholar 

  2. Xia, Y.-X., Chen, J.-F., Choppin, G.R.: Solubility, dissociation and complexation with Nd(III) and Th(IV) of oxine, thenoyltrifluoroacetone and 1,10-phenanthronline in 5.0 m NaCl. Talanta 43, 2073–2081 (1996)

    Article  CAS  PubMed  Google Scholar 

  3. Wei, Y.-Z., Sato, N., Nanjo, M.: The solubility of Sm2(SO4)3 and Nd2(SO4)3 in sulfate solutions: fundamental study on the recycling of rare earth magnet (in Japanese with English abstract). J. Japanese Resour. Mater. Soc. 105, 965–970 (1989)

    CAS  Google Scholar 

  4. Todorovsky, D.S., Milanova, M.M., Minkova, N.L., Diakovich, V.A.: The sulfuric acid processing of rare earth concentrate with high calcium content: an attempted simplified mathematical description. Hydrometallurgy 33, 359–365 (1993)

    Article  CAS  Google Scholar 

  5. Lokshin, E.P., Vershkova, Y.A., Vershkov, A.V., Tareeva, O.A.: Efficiency of sulphuric acid leaching of lanthanides in relation to quality of phosphosemihydrate obtained from Khibiny apatite concentrate. Russ. J. Appl. Chem. 75, 1608–1611 (2002)

    Google Scholar 

  6. Lebedev, V.N.: Sulfuric acid technology for processing of eudialite concentrate. Russ. J. Appl. Chem. 76, 1559–1563 (2003)

    Article  CAS  Google Scholar 

  7. Saito, T., Sato, H., Motegi, T.: Recovery of rare-earth elements. J. Alloy. Compd. 425, 145–147 (2006)

    Article  CAS  Google Scholar 

  8. Um, N., Hirato, T.: Dissolution behavior of La2O3, Pr2O3, Nd2O3, CaO and Al2O3 in sulfuric acid solutions and study of cerium recovery from rare earth polishing powder waste via two-stage sulfuric acid leaching. Mater. Trans. 54, 713–719 (2013)

    Article  CAS  Google Scholar 

  9. Yoon, H.S., Kim, C.J., Chung, K.W., Lee, S.J., Joe, A.R., Shin, Y.H., Lee, S.I., Yoo, S.J., Kim, J.G.: Leaching kinetics of neodymium in sulfuric acid from E-scrap of NdFeB permanent magnet. Korean J. Chem. Eng. 31, 706–711 (2014)

    Article  CAS  Google Scholar 

  10. Önal, M.A.R., Borra, C.R., Guo, M., Blanpain, B., Van Gerven, T.: Hydrometallurgical recycling of NdFeB magnets: complete leaching, iron removal and electrolysis. J. Rare Earths 35, 574–584 (2017)

    Article  Google Scholar 

  11. Wang, L., Huang, X., Yu, Y., Zhao, L., Wang, C., Feng, Z., Cui, D., Long, Z.: Towards cleaner production of rare earth elements from bastnaesite in China. J. Clean. Prod. 165, 231–242 (2017)

    Article  CAS  Google Scholar 

  12. München, D.D., Bernardes, A.M., Veit, H.M.: Evaluation of neodymium and praseodymium leaching efficiency from post-consumer NdFeB magnets. J. Sustain. Metall. 4, 288–294 (2018)

    Article  Google Scholar 

  13. Chen, S., Huang, X., Feng, Z., Xu, Y., Wang, M., Xia, C., Zhao, L.: Behavior of rare earth, iron, and phosphorus during purification of rare earth sulfate leach solution using magnesium oxide. Hydrometallurgy 196, 105377 (2020)

    Article  CAS  Google Scholar 

  14. Zhou, Y., Liu, J., Cheng, G., Xue, X., Yang, H.: Carbothermal reduction followed by sulfuric acid leaching of Bayan Obo tailings for selective concentration of iron and rare earth metals. Sep. Purif. Technol. 271, 118742 (2021)

    Article  CAS  Google Scholar 

  15. Tian, J., Yin, J.-Q., Chi, R., Rao, G.-H., Jiang, M.-T., Ouyang, K.-X.: Kinetics on leaching rare earth from the weathered crust elution-deposited rare earth ores with ammonium sulfate solution. Hydrometallurgy 101, 166–170 (2010)

    Article  CAS  Google Scholar 

  16. Xiao, Y.-F., Feng, Z.-Y., Huang, X.-W., Huang, L., Chen, Y.-Y., Wang, L.-S., Long, Z.-Q.: Recovery of rare earths from weathered crust elution-deposited rare earth ore without ammonia-nitrogen pollution: I leaching with magnesium sulfate. Hydrometallurgy 153, 58–65 (2015)

    Article  CAS  Google Scholar 

  17. Su, X., Wang, Y., Su, J., Lai, W., Gao, Y., Sun, X.: Enrichment of rare earths in magnesium sulfate leach solutions of ion-absorbed ores by extraction-precipitation. Hydrometallurgy 189, 105119 (2019)

    Article  CAS  Google Scholar 

  18. Xin, W., Deng, Y., Jiang, Y., Zhang, J., Chen, D.: Sulfurization roasting process of Nd2O3 and synthetic NdFeO3 with ferric sulfate. Metall. Mater. Trans. B 52, 1–12 (2021)

    Article  Google Scholar 

  19. Um, N., Hirato, T.: Precipitation of cerium sulfate converted from cerium oxide in sulfuric acid solutions and the conversion kinetics. Mater. Trans. 53, 1986–1991 (2012)

    Article  CAS  Google Scholar 

  20. Takahashi, T., Takano, A., Saitoh, T., Nagano, N., Hirai, S., Shimakage, K.: Separation and recovery of rare earth elements from phosphor sludge in processing plant of waste fluorescent lamp by pneumatic classification and sulfuric acidic leaching (in Japanese with English abstract). Resour. Raw Mater. 117, 579–585 (2001)

    CAS  Google Scholar 

  21. Korkmaz, K., Alemrajabi, M., Rasmuson, Å., Forsberg, K.: Recoveries of valuable metals from spent nickel metal hydride vehicle batteries via sulfation, selective roasting, and water leaching. J. Sustain. Metall. 4, 313–325 (2018)

    Article  Google Scholar 

  22. Zielinski, M., Cassayre, L., Destrac, P., Coppey, N., Garin, G., Biscans, B.: Leaching mechanisms of industrial powders of spent nickel metal hydride batteries in a pilot-scale reactor. Chemsuschem 13, 616–628 (2020)

    Article  CAS  PubMed  Google Scholar 

  23. Guerrero, A., Hernández, M.S., Goñi, S.: Effect of simulated radioactive liquid waste on the microstructure of cementitious materials: portlandite orientation and saturation factors in the pore solution. J. Am. Ceram. Soc. 83, 2803–2808 (2000)

    Article  CAS  Google Scholar 

  24. Xiong, Y.-L., Lord, A.S.: Experimental investigations of the reaction path in the MgO–H2O–CO2 system in solutions with various ionic strengths, and their applications to nuclear waste isolation. Appl. Geochem. 23, 1634–1659 (2008)

    Article  CAS  Google Scholar 

  25. Xiong, Y.-L., Kirkes, L., Marrs, C.: Experimental determination of solubility of neodymium hydroxide in Na2SO4 solutions to high ionic strength at 298.15 K under well-constrained conditions: applications to nuclear waste isolation. East Asia Forum on Radwaste Management (EAFORM), October 25–28, 2015, Taichung, Taiwan, R.O.C. SAND2015–9185C (2015)

  26. Xiong, Y.-L., Kirkes, L., Marrs, C.: A Pitzer Model for Na+–Nd3+–SO42––H+–OH system to high ionic strengths. Geological society of America annual meeting, September 25–28, 2016, Denver, CO, USA. SAND2016–9407C (2016)

  27. Xiong, Y.-L., Kirkes, L., Knox, J., Marrs, C., Dean, J.: Am(III)/Nd(III)—sulfate interactions at elevated temperatures in high ionic strength environments. ThermAc Workshop on aquatic actinide chemistry andthermodynamics at elevated temperatures, Dec 1–2, 2016, Dresden, Germany. SAND2016–11849C (2016)

  28. Sun, H.-F., Zhao, F.-H., Zhang, M., Li, J.-Q.: Behavior of rare earth elements in acid coal mine drainage in Shanxi Province, China. Environ. Earth Sci. 67, 205–213 (2012)

    Article  CAS  Google Scholar 

  29. Prudêncio, M.I., Valente, T., Marques, R., Braga, M.A.S., Pamplona, J.: Geochemistry of rare earth elements in a passive treatment system built for acid mine drainage remediation. Chemosphere 138, 691–700 (2015)

    Article  PubMed  Google Scholar 

  30. Li, X.-X., Wu, P.: Geochemical characteristics of dissolved rare earth elements in acid mine drainage from abandoned high-As coal mining area, southwestern China. Environ. Sci. Pollut. Res. 24, 20540–20555 (2017)

    Article  CAS  Google Scholar 

  31. Migaszewski, Z.M., Gałuszka, A., Dołęgowska, S.: Extreme enrichment of arsenic and rare earth elements in acid mine drainage: case study of Wiśniówka mining area (south-central Poland). Environ. Pollut. 244, 898–906 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. Wei, X.-C., Zhang, S.-C., Shimko, J., Dengler, R.W., II.: Mine drainage: treatment technologies and rare earth mine drainage: treatment technologies and rare earth. Water Environ. Res. 91, 1061–1068 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. Wolery, T.J., Xiong, Y.-L., Long, J.: Verification and validation plan/validation document for EQ3/6 version 8.0a for actinide chemistry, document version 8.10. Carlsbad, NM: Sandia National Laboratories. ERMS550239 (2010)

  34. Xiong, Y.-L.: WIPP verification and validation plan/validation document for EQ3/6 version 8.0a for actinide chemistry, revision 1, document version 8.20. Supersedes ERMS550239. Carlsbad, NM: Sandia National Laboratories. ERMS555358 (2011)

  35. Xiong, Y.-L.: An aqueous thermodynamic model for solubility of potassium ferrate in alkaline solutions to high ionic strengths at 283.15 K to 333.15 K. J. Solution Chem. 42, 1393–1403 (2013)

    Article  CAS  Google Scholar 

  36. Xiong, Y.-L.: A thermodynamic model for silica and aluminum in alkaline solutions with high ionic strength at elevated temperatures up to 100°C: applications to zeolites. Am. Miner. 98, 141–153 (2013)

    Article  CAS  Google Scholar 

  37. Xiong, Y.-L.: A Pitzer model for the Na-Al(OH)4-Cl-OH system and solubility of boehmite (AlOOH) to high ionic strength and to 250°C. Chem. Geol. 373, 37–49 (2014)

    Article  CAS  Google Scholar 

  38. Domski, P.S.: “Memo AP-173, EQ3/6 database update: DATA0.FM2” memorandum to WIPP Records, October 27, 2015. Carlsbad, NM: Sandia National Laboratories. ERMS564914 (2015)

  39. Domski, P.S., Xiong, Y.-L.: Prediction of baseline actinide solubilities with an updated EQ3/6 thermodynamic database (DATA0.FM2) in response EPA completeness comment 3-C-3 for CRA2014. Carlsbad, NM: Sandia National Laboratories. ERMS565032 (2015)

  40. Xiong, Y.-L., Domski, P.S.: Updating the WIPP thermodynamic database, revision 1, supersedes ERMS565730. Carlsbad, NM: Sandia National Laboratories. ERMS566047(2016)

  41. Harvie, C.E., Møller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C. Geochim. Cosmochim. Acta 48, 723–751 (1984)

    Article  CAS  Google Scholar 

  42. Wolery, T., Jove-Colon, C., Rard, J., Wijesinghe, A.: Pitzer database development: description of the Pitzer geochemical thermodynamic database data0. ypf. Appendix I in in-drift precipitates/salts model (P. Mariner) Report ANL-EBS-MD-000045 REV, 2 (2004)

  43. Truesdell, A.H., Hostetler, P.B.: Dissociation constants of \({\text{KSO}}_{4}^{-}\) from 10°–50°C. Geochim. Cosmochim. Acta 32, 1019–1022 (1968)

    Article  CAS  Google Scholar 

  44. Pokrovski, G.S., Schott, J., Sergeyev, A.S.: Experimental determination of the stability constants of NaSO 4 and NaB(OH) 04 in hydrothermal solutions using a new high-temperature sodium-selective glass electrode—implications for boron isotopic fractionation. Chem. Geol. 124, 253–265 (1995)

    Article  CAS  Google Scholar 

  45. Holmes, H.F., Mesmer, R.E.: An isopiestic study of {(1−y)NaHSO4 + yNa2SO4}(aq) at elevated temperatures. J. Chem. Thermodyn. 26, 581–594 (1994)

    Article  CAS  Google Scholar 

  46. Wang, M., Zhang, Y., Muhammed, M.: Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions I: a description of evaluation methods. Hydrometallurgy 45, 21–36 (1997)

    Article  CAS  Google Scholar 

  47. Xiong, Y.-L.: Estimation of medium effects on equilibrium constants in moderate and high ionic strength solutions at elevated temperatures by using specific interaction theory (SIT): interaction coefficients involving Cl, OH and Ac up to 200 °C and 400 bars. Geochem. Trans. 7, 4 (2006). https://doi.org/10.1186/1467-4866-7-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wolery, T.W., Jarek, R.L.: Software user’s manual. EQ3/6, version, 8. Software Document, (10813-UM), p.376 (2003)

  49. Wolery, T.W., Sutton, M.: Generic natural systems evaluation-thermodynamic database development and data management (No. LLNL-TR-500113). Lawrence Livermore National Lab (LLNL), Livermore, CA (United States) (2011)

  50. Gu, Y., Gammons, C.H., Bloom, M.S.: A one-term extrapolation method for estimating equilibrium constants of aqueous reactions at elevated temperatures. Geochim. Cosmochim. Acta 58, 3545–3560 (1994)

    Article  CAS  Google Scholar 

  51. Ridley, M.K., Wesolowski, D.J., Palmer, D.A., Kettler, R.M.: Association quotients of aluminum sulphate complexes in NaCl media from 50 to 125°C: results of a potentiometric and solubility study. Geochim. Cosmochim. Acta 63, 459–472 (1999)

    Article  CAS  Google Scholar 

  52. Xiao, C., Wesolowski, D.J., Palmer, D.A.: Formation quotients of aluminum sulfate complexes in NaCF3SO3 media at 10, 25, and 50°C from potentiometric titrations using a mercury/mercurous sulfate electrode concentration cell. Environ. Sci. Technol. 36, 166–173 (2002)

    Article  CAS  PubMed  Google Scholar 

  53. Wood, S.A.: The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem. Geol. 82, 159–186 (1990)

    Article  CAS  Google Scholar 

  54. Wood, S.A.: The aqueous geochemistry of the rare-earth elements and yttrium: 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure. Chem. Geol. 88, 99–125 (1990)

    Article  CAS  Google Scholar 

  55. Migdisov, A.A., Reukov, V.V., Williams-Jones, A.E.: A spectrophotometric study of neodymium (III) complexation in sulfate solutions at elevated temperatures. Geochim. Cosmochim. Acta 70, 983–992 (2006)

    Article  CAS  Google Scholar 

  56. Migdisov, A.A., Williams-Jones, A.E.: A spectrophotometric study of Nd (III), Sm (III) and Er (III) complexation in sulfate-bearing solutions at elevated temperatures. Geochim. Cosmochim. Acta 72, 5291–5303 (2008)

    Article  CAS  Google Scholar 

  57. Fanghänel, T., Kim, J.I.: Spectroscopic evaluation of thermodynamics of trivalent actinides in brines. J. Alloy. Compd. 271, 728–737 (1998)

    Article  Google Scholar 

  58. Neck, V., Fanghänel, T., Kim, J.I.: Aquatic chemistry and thermodynamic modelling of trivalent actinides (No. FZKA-6110). Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Nukleare Entsorgungstechnik (1998)

  59. Rai, D., Felmy, A.R., Fulton, R.W.: Nd3+ and Am3+ ion interactions with sulfate ion and their influence on NdPO4(c) solubility. J. Solution Chem. 24, 879–895 (1995)

    Article  CAS  Google Scholar 

  60. Das, G., Lencka, M.M., Eslamimanesh, A., Wang, P., Anderko, A., Riman, R.E., Navrotsky, A.: Rare earth sulfates in aqueous systems: thermodynamic modeling of binary and multicomponent systems over wide concentration and temperature ranges. J. Chem. Thermodyn. 131, 49–79 (2019)

    Article  CAS  Google Scholar 

  61. Vercouter, T., Amekraz, B., Moulin, C., Giffaut, E., Vitorge, P.: Sulfate complexation of trivalent lanthanides probed by nanoelectrospray mass spectrometry and time-resolved laser-induced luminescence. Inorg. Chem. 44, 7570–7581 (2005)

    Article  CAS  PubMed  Google Scholar 

  62. Skerencak, A., Panak, P.J., Fanghänel, T.: Complexation and thermodynamics of Cm (III) at high temperatures: the formation of [Cm(SO4)n]3−2n (n = 1, 2, 3) complexes at T = 25 to 200°C. Dalton Trans. 42, 542–549 (2013)

    Article  CAS  PubMed  Google Scholar 

  63. Choppin, G.R., Bond, A.H., Borkowski, M., Bronikowski, M.G., Chen, J.-F., Lis, S., Mizera, J., Pokrovsky, O.S., Wall, N.A., Xia, Y.-X., Moore, R.C.: Waste isolation pilot plant actinide source term test program: solubility studies and development of modeling parameters. Sandia National Laboratories Report. SAND99–0943 (2001)

  64. Friend, J.A.N.: The solubility of neodymium sulphate in water and in sulphuric acid solutions at various temperatures: a new hydrate. J. Chem. Soc. (Resumed) (1930). https://doi.org/10.1039/JR9300001633

    Article  Google Scholar 

  65. Kirmse, E.M., Schüchner, G.: Loslichkeit von Seltenerdsulfaten in Schwefelsiiure (Solubility of rare earth sulfates in sulfuric acid). Zeitschmift fur Chemie 27, 267–268 (1987)

    CAS  Google Scholar 

  66. Rard, J.A.: Aqueous solubilities of praseodymium, europium and lutetium sulphates. J. Solution Chem. 17, 499–517 (1988)

    Article  CAS  Google Scholar 

  67. Todorovsky, D.S., Milanova, M.M., Minkova, N.L., Balarev, C.: Solubility of some lanthanide sulfates in polycomponent systems containing H2SO4. Monatshefte für Chemie/Chem. Monthly 124, 673–679 (1993)

    Article  CAS  Google Scholar 

  68. Bunyakina, N.V., Storozhenko, D.A.: MgSO4–Ln2(SO4)3–H2O (Ln= Pr, Nd, Gd) systems at 25°C. Russ. J. Inorg. Chem. 49(11), 1772–1774 (2004)

    Google Scholar 

  69. Bunyakina, N.V., Storozhenko, D.A., Shevchuk, V.G.: Phase Equilibria in the M2SO4–Nd2(SO4) 3H2O (M = K, NH4) systems at 50–100°C. Russ. J. Inorg. Chem. 35, 570–572 (1990)

    Google Scholar 

  70. Thakur, P., Xiong, Y., Borkowski, M.: An improved thermodynamic model for the complexation of trivalent actinides and lanthanide with oxalic acid valid to high ionic strength. Chem. Geol. 413, 7–17 (2015)

    Article  CAS  Google Scholar 

  71. Sarver, L.A., Brinton, P.H.P.: The solubilities of some rare-earth oxalates. J. Am. Chem. Soc. 49, 943–958 (1927)

    Article  CAS  Google Scholar 

  72. Kul, M., Topkaya, Y., Karakaya, I.: Rare earth double sulfates from pre-concentrated bastnasite. Hydrometallurgy 93, 129–135 (2008)

    Article  CAS  Google Scholar 

  73. Porvali, A., Wilson, B.P., Lundström, M.: Lanthanide-alkali double sulfate precipitation from strong sulfuric acid NiMH battery waste leachate. Waste Manage. 71, 381–389 (2018)

    Article  CAS  Google Scholar 

  74. Lokshin, E.P., Tareeva, O.A., Kashulina, T.G.: A study of the solubility of yttrium, praseodymium, neodymium and gadolinium sulphates in the presence of sodium and potassium in sulphuric-phosphoric acid solutions at 20°C. Russ. J. Appl. Chem. 80, 1275–1280 (2007)

    Article  CAS  Google Scholar 

  75. Zambonini, F., Cagliotti, V.: Rare earth and alkali metal double sulfates: II. Sulfates of neodymium and potassium. Atti della Accademia Nazionale dei Lincei 5, 308–313 (1924)

    Google Scholar 

  76. Restaino, S.: The double sulphates of rare earths and alkali metals: praseodymium and potassium sulphates. Atti della Accademia Nazionale dei Lincei 20, 192–200 (1934)

    CAS  Google Scholar 

  77. Shevchuk, V.G.; Storozhenko, D.A.; Bunyakina, N.V.: Solubility in NaA–NdA–H2O (A=Cl, SO4) systems at 50, 75, and 100°C. Zhurnal Neorganicheskoi Khimii (Russ. J. Inorg. Chem.), 1063–1064 (1988)

  78. Shevchuk, A.V., Skorikov, V.M.: Ternary aqueous systems of praseodymium and alkali metal sulfate salts at 25°C. Zhurnal Neorganicheskoi Khimii 25, 1121–1124 (1980)

    CAS  Google Scholar 

Download references

Acknowledgements

Sandia National Laboratories (SNL) is a multimission laboratory operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. This research is funded by the LDRD from SNL (Project # 222400) and by the Spent Fuel and Waste Science and Technology (SFWST) programs administered by the Office of Nuclear Energy (NE) of the U.S. Department of Energy. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. The authors are grateful to the journal reviewers for the detailed and insightful reviews, which led to the significant improvement of our paper. We thank Dr. Luigi Paduano, the Editor, for his time and editorial efforts.

Author information

Authors and Affiliations

Authors

Contributions

YX wrote the main manuscript, and all authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Yongliang Xiong.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Xu, G. & Wang, Y. A Thermodynamic Model for Nd(III)–Sulfate Interaction at High Ionic Strengths and Elevated Temperatures: Applications to Rare Earth Element Extraction. J Solution Chem 52, 447–466 (2023). https://doi.org/10.1007/s10953-022-01245-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01245-0

Keywords

Navigation