Skip to main content
Log in

Structural Relaxation and Thermodynamics of Viscous Aqueous Systems: A Simplified Reappraisal

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The attainment of true equilibrium conditions is a dynamic process that encompasses a time span. For slow relaxing systems, non-equilibrium steady states can often look like equilibrium states. This is the case of viscoelastic systems, whose properties reflect their thermo-rheological history. After a summary of the seminal woks by Eyring, Adam & Gibbs and Angell, and mention of promising recent approaches that imply updated theoretical and experimental techniques, the paper suggests a simplified approach for aqueous systems, through a modified expression of the chemical potential of water and use of the “dynamic” phase diagram, so far proposed by Slade and Levine. For homogeneous systems (aqueous solutions), an extra term in the expression of the chemical potential accounts for the energy related to the residual strains produced during the thermo-rheological history of the system. This approach allows estimation of the effect of viscosity on the observed freezing point of polymer solutions. For heterogeneous systems (hydrogels, colloidal glasses), changes of the phase boundaries in the phase diagram explain the gel/sol hysteresis and the syneresis process as the result of water exchange between hosting meshes and trapped aqueous solution. Finally, physical hurdles that hinder inter-phase water displacements and/or the access to the headspace of the system can lead to the coexistence of aqueous phases with different aW within the same heterogeneous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A difference in water activity, either between candy and air or between two domains within the candy, is the driving force for moisture migration in confections. When the difference in water activity is large, moisture migration is rapid, although the rate of moisture migration depends on the nature of resistances to water diffusion. Barrier packaging films protect the candy from air whereas edible films inhibit moisture migration between different moisture domains within a confection.” [53].

References

  1. Guggenheim, E.A.: Themodynamics: An Advanced Treatment for Chemists and Physicists. North Holland Physics Publisher, Amsterdam (1986)

    Google Scholar 

  2. Jones, G., Dole, M.J.: The viscosity of aqueous solutions as a function of the concentration. Am. Chem. Soc. 51, 2950–2964 (1929)

    CAS  Google Scholar 

  3. Schiraldi, A., Fessas, D.: Knudsen thermogravimetry approach to the thermodynamics of aqueous solutions. J. Chem. Thermodyn. 62, 79–85 (2013)

    CAS  Google Scholar 

  4. Greenspan L.: Humidity fixed points of binary saturated aqueous solutions. J. Res. Nat. Bureau Stand. 81 (1977).

  5. Kirinċiċ, S., Klofutar, C.: Viscosity of aqueous solutions of poly(ethylene glycol)s at 29815 K. Fluid Phase Equilib. 155, 311–325 (1999).

  6. Pleiner, H., Brand, H.R.: A two-fluid model for the formation of clusters close to a continuous or almost continuous transition. Rheol. Acta 60, 675–690 (2021)

    CAS  Google Scholar 

  7. Gibbs, J.H., DiMarzio, E.A.: Nature of the glass transition and the glassy state. J. Chem. Phys. 28, 373–383 (1958)

    CAS  Google Scholar 

  8. Adam, G., Gibbs, J.H.: On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965)

    CAS  Google Scholar 

  9. Freed, K.F.: Communication: towards first principles theory of relaxation in supercooled liquids formulated in terms of cooperative motion. J. Chem. Phys. 141(141102), 1–4 (2014)

    Google Scholar 

  10. Maxwell, J.C.: Phil. Mag. 35, 133 (1868)

    Google Scholar 

  11. Ito, K., Moynihan, C.T., Angell, C.A.: Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999)

    CAS  Google Scholar 

  12. Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    CAS  Google Scholar 

  13. Angell, C.A., Smith, D.L.: Test of the entropy basis of the Vogel-Tammann-Fulcher equation. Dielectric relaxation of polyalcohols near Tg. J. Phys. Chem. 86, 3845–3852 (1982)

    CAS  Google Scholar 

  14. Ikeda, M., Aniya, M.: Understanding the Vogel–Fulcher–Tammann law in terms of the bond strength–coordination number fluctuation model. J. Non Cryst. Solids 371–72, 53–57 (2013)

    Google Scholar 

  15. Schiraldi, A.: Comparison between WLF and VTF expressions and related physical meaning. In: Levine, H. (ed.) Amorphous Food and Pharmaceutical Systems, pp. 131–136. The Royal Society Chemistry (2002).

  16. Angell, C.A.: Liquid fragility and the glass transition in water and aqueous solutions. Chem. Rev. 102, 2627–2650 (2002)

    CAS  PubMed  Google Scholar 

  17. Martinez, L.-M., Angell, C.A.: A thermodynamic connection to the fragility of glass-forming liquids. Nature 410, 663–667 (2001)

    CAS  PubMed  Google Scholar 

  18. Klein, I.S., Angell, C.A.: Excess thermodynamic properties of glass forming liquids: the rational scaling of heat capacities, and the thermodynamic fragility dilemma resolved. J. Non-Cryst. Solids 451, 116–123 (2016)

    CAS  Google Scholar 

  19. Eyring, H.J.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)

    CAS  Google Scholar 

  20. Kincaid, J.F., Eyring, H.J., Stearn, A.E.: The theory of absolute reaction rates and its application to viscosity and diffusion in the liquid state. Chem. Reviews 28, 301–365 (1941)

    CAS  Google Scholar 

  21. Schottky, W.: Chemie der elementar prozesse aufbau der materie. Zeits.-P. Chem. B29, 335–355 (1935)

    CAS  Google Scholar 

  22. Frenkel, Y.: Über die Wärmebewegung in festen und flüssigen Körpern. Z. Phys. 35, 652–669 (1926)

    CAS  Google Scholar 

  23. Chen, C., Zeng, H., Deng, Y., Yan, J., Jiang, Y., Chen, G., Zu, Q., Sun, L.: A novel viscosity-temperature model of glass-forming liquids by modifying the eyring viscosity equation. Appl. Sci. 10(428), 1–9 (2020). https://doi.org/10.3390/app10020428

    Article  CAS  Google Scholar 

  24. Schrodt, J.T., Akel, R.M.: Binary liquid viscosities and their estimation from classical solution thermodynamics. J. Chem. Eng. Data 34, 8–13 (1989)

    CAS  Google Scholar 

  25. Tong, H., Tanaka, H.: Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids. Phys. Rev. X 8(011041), 1–18 (2018). https://doi.org/10.1103/PhysRevX.8.011041

    Article  Google Scholar 

  26. Mishin, Y.: Thermodynamic theory of equilibrium fluctuations. Ann. Physics 363, 48–97 (2015)

    CAS  Google Scholar 

  27. Karmakara, S., Dasgupta, C., Sastry, S.: Growing length and time scales in glass-forming liquids. PNAS 106, 3675–3679 (2009)

    Google Scholar 

  28. Ghoshal, D., Joy, A.: Shear stresses of colloidal dispersions at the glass transition in equilibrium and in flow. Phys. Rev. 102, 062605 (2020)

    CAS  Google Scholar 

  29. Johari, G.P.: Specific heat relaxation-based critique of isothermal glass transition, zero residual entropy and time-average formalism for ergodicity loss. Thermochim. Acta 523, 97–104 (2011)

    CAS  Google Scholar 

  30. Barrat, J.-L., Feigelman, M., Kurchan, J., Dalibard, J. (eds.): Slow Relaxations and Non-equilibrium Dynamics in Condensed Matter. Euro Summer School, Session LXXVII, 1–26 July 2002, NATO Advanced Study Institute. EDP Sci. Springer Publication (2003)

  31. Thirumalai, D., Mountain, R.D.: Activated dynamics, loss of ergodicity, and transport in supercooled liquids. Phys. Rev. E 47, 479–489 (1993)

    CAS  Google Scholar 

  32. Cipelletti, L., Ramos, L.: Slow dynamics in glassy soft matter. J. Phys. 17, 253–285 (2005)

    Google Scholar 

  33. Slade, L., Levine, H.: Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. Nutr. 30, 115–360 (1991)

    CAS  PubMed  Google Scholar 

  34. Corti, H.R., Angell, C.A., Auffret, T., Levine, H., Buera, M.P., Reids, D.S., Roos, Y.H., Slade, L.: Empirical and theoretical models of equilibrium and non-equilibrium transition temperatures of supplemented phase diagrams in aqueous systems (IUPAC Technical Report). Pure Appl. Chem. 82, 1065–1097 (2010)

    CAS  Google Scholar 

  35. Crassous, J.J., Siebenbürger, M., Ballauff, M., Drechsler, M., Hajnal, D., Henrich, O., Fuchs, M.: Shear stresses of colloidal dispersions at the glass transition in equilibrium and in flow. J. Chem. Phys. 128, 204902 (2008)

    CAS  PubMed  Google Scholar 

  36. Fessas, D., Schiraldi, A.: State diagrams of arabinoxylan-water binaries. Thermochim. Acta 370, 83–89 (2001)

    CAS  Google Scholar 

  37. Belton, P.S.: On the elasticity of wheat gluten. J. Cereal Sci. 29, 103–107 (1999)

    CAS  Google Scholar 

  38. Schiraldi, A., Fessas, D.: Water properties in wheat ¯our dough I: classical thermogravimetry approach. Food Chem. 72, 237–244 (2001)

    Google Scholar 

  39. Piazza, L., Schiraldi, A.: Correlation between fracture of semi-sweet hard biscuits and dough viscoelastic properties. J. Texture Studies 28, 523–541 (1997)

    Google Scholar 

  40. Corredig, M., Alexander, M.: Food emulsions studied by DWS: recent advances. Trends Food Sci. Technol. 19, 67–75 (2008)

    CAS  Google Scholar 

  41. Butler, M.F., Heppenstall-Butler, M.: Phase separation in gelatin/dextran and gelatin/maltodextrin mixtures. Food Hydrocolloids 17, 815–830 (2003)

    CAS  Google Scholar 

  42. Paradossi, G., Chiessi, E., Barbiroli, A., Fessas, D.: Xanthan and glucomannan mixtures: synergistic interactions and gelation. Biomacromol. 3, 498–504 (2002)

    CAS  Google Scholar 

  43. Schiraldi A. Unpublished data, available from the author.

  44. San Biagio, P.L., Bulone, D., Emanuele, A., Palma-Vittorelli, M.B., Palma, M.U.: Spontaneous symmetry-breaking pathways: time-resolved study of agarose gelation. Food Hydrocolloids 10, 91–97 (1996)

    CAS  Google Scholar 

  45. Boral, S., Bohidar, H.B.: Effect of water structure on gelation of agar in glycerol solutions and phase diagram of agar organogels. J. Phys. Chem B 116, 7113–7121 (2012).

  46. Voorhaar, L., Hoogenboom, R.: Supramolecular polymer networks: hydrogels and bulk materials. Chem. Soc. Rev. 45, 4013–4031 (2016). https://doi.org/10.1039/c6cs00130k

    Article  CAS  PubMed  Google Scholar 

  47. Appel, E.A., del Barrio, J., Loh, X.J., Scherman, O.A.: Supramolecular polymeric hydrogels. Chem. Soc. Rev. 41, 6195–6214 (2012)

    CAS  PubMed  Google Scholar 

  48. van der Sman, R.G.M., Meinders, M.B.J.: Prediction of the state diagram of starch water mixtures using the Flory–Huggins free volume theory. Soft Matter. (2011). https://doi.org/10.1039/c0sm00280a.

  49. Dawson, K.A., Foffi, G., Sciortino, F., Tartaglia, P., Zaccarelli, E.: Mode-coupling theory of colloids with short-range attractions. J. Phys. 13, 9113–9126 (2001)

    CAS  Google Scholar 

  50. Hunter, G.L., Weeks, E.R.: The physics of the colloidal glass transition. Rep. Prog. Phys. 75, 066501 (2012)

  51. Sessoms, D.A., Bischofberger, I., Cipelletti, L., Trappe, V.: Multiple dynamic regimes in concentrated microgel systems. Phil. Trans. R. Soc. A 367, 5013–5032 (2009)

    CAS  PubMed  Google Scholar 

  52. Dauchot, O.: Ageing and the glass transition. Lect. Notes Phys. 716, 161–206 (2007). https://doi.org/10.1007/3-540-69684-9_4

    Article  CAS  Google Scholar 

  53. Ergun, R., Lietha, R., Hartel, R.W.: Moisture and shelf life in sugar confections. Crit. Rev-Food Sci. Nutr. 50, 162–192 (2010)

    CAS  PubMed  Google Scholar 

  54. Ellis, R.J.: Macromolecular crowding: obvious but underappreciated. Trends in Biochem. Sci. 26, 597–604 (2001)

    CAS  Google Scholar 

  55. Tolostoguzov, V.B.: Thermodynamic Incompatibility of food macromolecules. In: Dickinson, E., Walstra, P. (eds.) Food colloids and polymers: stability and mechanical properties. R. Soc. Chem., Special Publication, N 113, 94–102 (1993).

  56. Hills, B.P.: Magnetic Resonance Imaging in Food Science. Wiley, New York (1998)

    Google Scholar 

  57. Hall, L.D., Amin, M.H.G., Evans, S., Nott, K.P., Sun, L.: Quantitation of diffusion and mass transfer of water by MRI. In: Berk, Z., Leslie, R.B., Lillford, P.J., Mizrahi, S., (eds.) Water Science for Food, Health, Agriculture and Environment, pp. 1255–1271. Technomic Publications Co, Lancaster (2001).

  58. Ruan, R.R., Chen, P.L.: Water in Foods and Biological Materials. A Nuclear magnetic Resonance Approach. Technomic Publ Co, Lancaster (1998)

    Google Scholar 

  59. Rolandelli, G., Farroni, A.E., Buera, M.P.: Analysis of molecular mobility in corn and quinoa flours through 1H NMR and its relationship with water distribution, glass transition and enthalpy relaxation. Food Chem. 373(1–9), 131422 (2022)

    CAS  PubMed  Google Scholar 

  60. Mallamace, F., Corsaro, C., Mallamace, D., Vasi, S., Vasi, C., Stanley, H.E.: Thermodynamic properties of bulk and confined water. J. Chem. Phys. 141, 141–150 (2014)

    Google Scholar 

  61. Hu, Y., Li, C., Tan, Y., McClements, D.J., Wang, L.: Insight of rheology, water distribution and in vitro digestive behavior of starch based-emulsion gel: impact of potato starch concentration. Food Hydrocolloids 132, 107859 (2022)

    CAS  Google Scholar 

  62. Stecchini, M.L., Del Torre, M., Donda, S., Maltini, E., Pacor, S.: Influence of agar content on the growth parameters of Bacillus cereus. Int. J. Food Microb. 64, 81–88 (2001)

    CAS  Google Scholar 

  63. Hills, B.P., Manning, C.E., Ridge, Y., Brocklehurst, T.: NMR water relaxation, water activity and bacterial survival in porous media. J. Sci. Food Agric. 71, 185–194 (1996)

    CAS  Google Scholar 

Download references

Funding

No funds were received for the activities related to this paper.

Author information

Authors and Affiliations

Authors

Contributions

Alberto Schiraldi wrote the manuscript and prepared all the figures.

Corresponding author

Correspondence to Alberto Schiraldi.

Ethics declarations

Conflict of interest

Alberto Schiraldi, declares that this paper does not imply any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Equivalence of WLF and VTF Equations [12,13,14]

Taking into account that either equation is empirical and aims at the description of the relaxation time at the temperature T, with reference to Tg and To, for WLF and VTF, respectively, one may put:

2.1 WLF

$$\tau_{{\text{R}}} \left( T \right) = \tau_{{\text{R}}} \left( {T_{{\text{g}}} } \right)\exp \left[ { - \frac{{C_{1} \left( {T - T_{{\text{g}}} } \right)}}{{C_{2} + \left( {T - T_{{\text{g}}} } \right)}}} \right]$$
(A1)

2.2 VTF

$$\tau_{{\text{R}}} \left( T \right) = \tau_{{\text{R}}} \left( \infty \right){\text{exp}}\left( {\frac{B}{{\left( {T - T_{{\text{o}}} } \right)}}} \right)$$
(A2)

For T = Tg, Eq. 5 leads to

$$\tau_{{\text{R}}} \left( {T_{{\text{g}}} } \right) = \tau_{{\text{R}}} \left( \infty \right)\exp \left( {\frac{B}{{\left( {T_{{\text{g}}} - T_{{\text{o}}} } \right)}}} \right)$$
(A3)

that can be replaced in Eq. A1 which in combination with A2 gives

$$\tau_{{\text{R}}} \left( T \right) = \tau_{{\text{R}}} \left( \infty \right)\exp \left( {\frac{B}{{\left( {T_{{\text{g}}} - T_{{\text{o}}} } \right)}}} \right)\exp \left[ { - \frac{{C_{1} \left( {T - T_{{\text{g}}} } \right)}}{{C_{2} + \left( {T - T_{{\text{g}}} } \right)}}} \right] = \tau_{{\text{R}}} \left( \infty \right)\exp \left( {\frac{B}{{\left( {T - T_{{\text{o}}} } \right)}}} \right)$$
(A4)

The eventual result is as follows:

$$\frac{{C_{2} + \left( {T - T_{{\text{g}}} } \right)}}{{C_{1} }} = \frac{{\left( {T - T_{{\text{o}}} } \right)\left( {T_{{\text{g}}} - T_{{\text{o}}} } \right)}}{B}$$
(A5)

Putting T = To, one gets

$$C_{2} = \left( {T_{{\text{g}}} - T_{{\text{o}}} } \right)$$
(A6)

and

$$B = C_{1} C_{2}$$
(A7)

Taking into account that (TTo) = (TTg) + (TgTo) = C2 + (TTg), Eqs. A6 and A7 state the formal equivalence of the WLF and VTF equations. However, it is important to recall that the WLF equation seems more adequate for polymer solutions at (Tg + 100 K) > T > Tg and therefore does not cover the (To, Tg) range, while the VTF equation holds for T > To and describes the experimental evidence of many glass-forming systems [14].

Equation 6 reveals that C1 corresponds to the abrupt change of the order of magnitude of τR on crossing the glass transition threshold Tg [15]:

$$\log_{10} \left[ {\frac{{\tau_{{\text{R}}} \left( {T_{{\text{g}}} } \right)}}{{\tau_{{\text{R}}} \left( \infty \right)}}} \right] = \log_{10} \left[ {\frac{{\eta \left( {T_{{\text{g}}} } \right)}}{\eta \left( \infty \right)}} \right] = \frac{{C_{1} }}{2.3}$$
(A8)

which, for 8 orders of magnitude viscosity drop, implies for C1 a “universal” value around 17 (while C2 ≈ 50 °C) [15].

When combined with Eqs. 1, A6 and A7, A8 leads to

$$S_{{\text{c}}} = \frac{C}{B}\frac{{T - T_{{\text{o}}} }}{T} = \frac{C}{{C_{1} C_{2} }}\left( {1 - \frac{{T_{{\text{o}}} }}{T}} \right) = \frac{C}{{\left( {T_{{\text{g}}} - T_{{\text{o}}} } \right) \ln \left( {\frac{{\tau_{{\text{R,g}}} }}{{\tau_{{{\text{R}},\infty }} }}} \right)}}$$
(A9)

where To is the temperature at which Sc = 0, possibly coincident with the Kauzmann temperature, TK, where the entropy of the undercooled liquid becomes equal to that of the thermodynamically stable solid phase.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiraldi, A. Structural Relaxation and Thermodynamics of Viscous Aqueous Systems: A Simplified Reappraisal. J Solution Chem 52, 367–384 (2023). https://doi.org/10.1007/s10953-022-01238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01238-z

Keywords

Navigation