Skip to main content
Log in

Volumetric and Acoustic Investigation on the Binary Mixtures of Monoethanolamine + 1-Alcohols (C3–C6) at Different Temperatures from Experimental and Theoretical Points of View

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The densities, \(\rho\) and speeds of sound, u were measured for pure and the binary mixtures of monoethanolamine (MEA) + 1-alcohols (1-propanol, 1-butanol, 1-pentanol and 1-hexanol) at (298.15–318.15) K and the whole composition range. From the experimental data excess molar volumes, \({V}_{\text{m}}^{\text{E}}\), excess partial molar volumes, \({\overline{V}}_{i}^{\text{E}},\) excess thermal expansion coefficients, \({\alpha }^{\text{E}}\), isothermal coefficients of excess molar enthalpies, \((\partial {H}_{\text{m}}^{\text{E}}/\partial P)_{T,x}\), isentropic compressibility, \({k}_{\text{s}}^{ }\) and excess isentropic compressibilities, \({k}_{\text{s}}^{\text{E}}\) have been calculated for the binary systems. The excess molar volume and excess isentropic compressibility were correlated with the Redlich–Kister polynomial equation. The excess molar volumes and excess isentropic compressibilities were negative for all binary systems, except, for the system of MEA + 1-hexanol in which excess molar volume showed a sigmoid shape. The effect of temperature and chain length of alcohol on the excess molar volumes, \({V}_{\text{m}}^{\text{E}}\), and excess isentropic compressibilities, \({k}_{\text{s}}^{\text{E}}\), are discussed in terms of molecular interactions between unlike molecules. The Extended Real Associated Solution model was applied to correlate the excess molar volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3.
Fig. 4
Fig. 5.

Similar content being viewed by others

References

  1. Li, Z., Zhao, D., Zhuang, Y., Yang, F., Liu, X., Chen, Y.: Volumetric properties of monoethanolamine and alcohol binary mixtures at different temperatures and 0.1 MPa. J. Chem. Thermodyn. 133, 37–45 (2019)

    Article  CAS  Google Scholar 

  2. Dean, R., Moulins, J., MacInnis, A., Palepu, R.M.: Excess volumes, partial molar and adiabatic compressibilities of binary mixtures of n-alcohols with monoethanolamine. Phys. Chem. Liq. 47, 302–310 (2009)

    Article  CAS  Google Scholar 

  3. Lee, M.-J., Lin, T.-K., Pai, Y.-H., Lin, K.-S.: Density and viscosity for monoethanolamine + 1-propanol, + 1-hexanol, and + 1-octanol. J. Chem. Eng. Data 42, 854–857 (1997)

    Article  CAS  Google Scholar 

  4. Kermanpour, F., Kheyrabadi, Z.G.: Experimental study of some thermodynamic properties of binary mixtures containing 3-amino-1-propanol, 2-aminoethanol, and 1-butanol at temperatures of 293.15–333.15 K to model the excess molar volumes using the PFP theory. J. Chem. Eng. Data 65, 5360–5368 (2020)

    Article  CAS  Google Scholar 

  5. Páramo, R., Alonso, V., González, J.A., de la Fuente, I.G., Casanova, C., Cobos, J.C.: Thermodynamics of mixtures containing amines xiv. cpme of benzylamine with heptane at 293.15 K or with methanol, 1-propanol or 1-pentanol at 293.15–308.15 K. Thermochim. Acta 586, 75–79 (2014)

    Article  Google Scholar 

  6. Segade, L., Jiménez de Llano, J., Domínguez-Pérez, M., Cabeza, Ó., Cabanas, M., Jiménez, E.: Density, surface tension, and refractive index of octane + 1-alkanol mixtures at T = 298.15 K. J. Chem. Eng. Data 48, 1251–1255 (2003)

    Article  CAS  Google Scholar 

  7. Riddick, J.A., Bunger, W.B., Sakano, T.K.: Organic Solvents: Physical Properties and Methods of Purification. Wiley, New York (1986)

    Google Scholar 

  8. Langa, E., Mainar, A.M., Pardo, J.I., Urieta, J.S.: Excess enthalpy, excess volume, and speed of sound deviation for the mixtures β-pinene+ ethanol and β-pinene + 1-propanol at (283.15, 298.15, and 313.15) K. J. Chem. Eng. Data 50, 1255–1261 (2005)

    Article  CAS  Google Scholar 

  9. Du, W., Wang, X.: Density and viscosity for binary mixtures of methyl decanoate with 1-propanol, 1-butanol, and 1-pentanol. J. Mol. Liq. 294, 111647 (2019)

    Article  CAS  Google Scholar 

  10. Fatima, U., Anwar, N., Montes-Campos, H., Varela, L.M.: Molecular dynamic simulation, molecular interactions and structural properties of 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide + 1-butanol/1-propanol mixtures at (298.15–323.15) K and 0.1 M Pa. Fluid Phase Equilib. 472, 9–21 (2018)

    Article  CAS  Google Scholar 

  11. Ramos-Estrada, M., López-Cortés, I.Y., Iglesias-Silva, G.A., Pérez-Villaseñor, F.: Density, viscosity, and speed of sound of pure and binary mixtures of ionic liquids based on sulfonium and imidazolium cations and bis (trifluoromethylsulfonyl) imide anion with 1-propanol. J. Chem. Eng. Data 63, 4425–4444 (2018)

    CAS  Google Scholar 

  12. Makhlouf, H., Muñoz-Rujas, N., Aguilar, F., Belhachemi, B., Montero, E.A., Bahadur, I., Negadi, L.: Density, speed of sound and refractive index of mixtures containing 2-phenoxyethanol with propanol or butanol at various temperatures. J. Chem. Thermodyn. 128, 394–405 (2019)

    Article  CAS  Google Scholar 

  13. Vercher, E., Orchilles, A.V., Miguel, P.J., Martínez-Andreu, A.: Volumetric and ultrasonic studies of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid with methanol, ethanol, 1-propanol, and water at several temperatures. J. Chem. Eng. Data 52, 1468–1482 (2007)

    Article  CAS  Google Scholar 

  14. Pena, M.D., Tardajos, G.: Isothermal compressibilities of n-alcohols from methanol to 1-dodecanol at 298.15, 308.15, 318.15, and 333.15 K. J. Chem. Thermodyn. 11, 441–445 (1979)

    Article  Google Scholar 

  15. Domańska, U., Pobudkowska, A., Wiśniewska, A.: Solubility and excess molar properties of 1, 3-dimethylimidazolium methylsulfate, or 1-butyl-3-methylimidazolium methylsulfate, or 1-butyl-3-methylimidazolium octylsulfate ionic liquids with n-alkanes and alcohols: analysis in terms of the PFP and FBT models. J. Solution Chem. 35, 311–334 (2006)

    Article  Google Scholar 

  16. Chandraiah, T., Karlapudi, S., Govinda, V., Sreedhar, N., Bahadur, I.: Effect of alkyl group of 1-alkanol on molecular interactions of ethanoic acid mixtures: FT-IR spectroscopic and volumetric studies. J. Mol. Liq. 255, 354–363 (2018)

    Article  CAS  Google Scholar 

  17. Zorębski, E., Chorążewski, M., Tkaczyk, M.: Excess molar heat capacities for (1-butanol + 1,3-butanediol) at temperatures from (285 to 353) K. J. Chem. Thermodyn. 37, 281–287 (2005)

    Article  Google Scholar 

  18. Counsell, J., Lees, E., Martin, J.: Thermodynamic properties of organic oxygen compounds. Part XIX. Low-temperature heat capacity and entropy of propan-1-ol, 2-methylpropan-1-ol, and pentan-1-ol. J. Chem. Soc. A. (1968). https://doi.org/10.1039/J19680001819

    Article  Google Scholar 

  19. Živković NV, Majstorović DM, Kijevčanin ML, Živković EM: Volumetric and viscometric study of 1-hexanol-based binary systems: experimental determination and modeling. J. Chem. Eng. Data 65, 3044 (2020)

    Article  Google Scholar 

  20. Vargas-Ibáñez, L.T., Cano-Gómez, J.J., Iglesias-Silva, G.A., Santos-López, I.A., Benavides-Moran, O.E., Zwolinski, P.: Physical properties of biodiesel blended with hexanol isomers at different temperatures: surface tension, density, viscosity, and refractive index. J. Chem. Eng. Data 65, 3044–3062 (2020)

    Article  Google Scholar 

  21. Mirheydari, S.N., Barzegar-Jalali, M., Faraji, S., Shekaari, H., Martinez, F., Jouyban, A.: Volumetric and acoustic properties of ionic liquid, 1-hexyl-3-methylimidazolium bromide in 1-hexanol, 1-heptanol and 1-octanol at T = (298.15–328.15) K. Phys. Chem. Liq. 58, 545–558 (2020)

    Article  CAS  Google Scholar 

  22. van Miltenburg, J.C., Gabrielová, H., Růžička, K.: Heat capacities and derived thermodynamic functions of 1-hexanol, 1-heptanol, 1-octanol, and 1-decanol between 5 K and 390 K. J. Chem. Eng. Data 48, 1323–1331 (2003)

    Article  Google Scholar 

  23. Álvarez, E., Cerdeira, F., Gómez-Diaz, D., Navaza, J.M.: Density, speed of sound, isentropic compressibility, and excess volume of (monoethanolamine + 2-amino-2-methyl-1-propanol), (monoethanolamine + triethanolamine), and (monoethanolamine + N-methyldiethanolamine) at temperatures from (293.15 to 323.15) K. J. Chem. Eng. Data 55, 994–999 (2010)

    Article  Google Scholar 

  24. Hawrylak, B., Burke, S.E., Palepu, R.: Partial Molar and Excess volumes and adiabatic compressibilities of binary mixtures of ethanolamines with water. J. Solution Chem. 29, 575–594 (2000)

    Article  CAS  Google Scholar 

  25. Chiu, L.-F., Liu, H.-F., Li, M.-H.: Heat capacity of alkanolamines by differential scanning calorimetry. J. Chem. Eng. Data 44, 631–636 (1999)

    Article  CAS  Google Scholar 

  26. Zarei, H.A., Jalili, F.: Densities and derived thermodynamic properties of (2-methoxyethanol+ 1-propanol, or 2-propanol, or 1, 2-propandiol) at temperatures from T = (293.15 to 343.15) K. J. Chem. Thermodyn. 39, 55–66 (2007)

    Article  CAS  Google Scholar 

  27. Heydarian, S., Almasi, M., Saadati, Z.: Thermophysical study of binary mixtures of 1-butyl-3-methylimidazolium nitrate ionic liquid+ alcohols at different temperatures. J. Chem. Thermodyn. 135, 345–351 (2019)

    Article  CAS  Google Scholar 

  28. Iloukhani, H., Khanlarzadeh, K.: Volumetric properties for binary and ternary systems consist of 1-chlorobutane, n-butylamine and isobutanol at 298.15 K with application of the Prigogine–Flory–Patterson theory and ERAS-model. Thermochim. Acta 502, 77–84 (2010)

    Article  CAS  Google Scholar 

  29. Gao, H., Yu, Z., Wang, H.: Densities and volumetric properties of binary mixtures of amino acid ionic liquid [bmim][Glu] or [bmim][Gly] with benzylalcohol at T = (298.15 to 313.15) K. J. Chem. Thermodyn. 42, 640–645 (2010)

    Article  CAS  Google Scholar 

  30. Flory, P.D.: Statistical thermodynamics of liquid mixtures. J. Am. Chem. Soc. 87, 1833–1838 (1965)

    Article  CAS  Google Scholar 

  31. Kretschmer, C.B., Wiebe, R.: Thermodynamics of alcohol-hydrocarbon mixtures. J. Chem. Phys. 22, 1697–1701 (1954)

    Article  CAS  Google Scholar 

  32. Radović, I., Grozdanić, N., Djordjević, B., Šerbanović, S., Kijevčanin, M.: Prediction of excess molar volumes of binary mixtures by Prigogine–Flory–Patterson (PFP) and Extended Real Association Solution (ERAS) models. J. Serb. Chem. Soc. 82, 1379–1393 (2017)

    Article  Google Scholar 

  33. Khanlarzadeh, K., Iloukhani, H.: Application of ERAS-model and Prigogine–Flory–Patterson theory to excess molar volumes for ternary mixtures of (2-chlorobutane+ butylacetate+ isobutanol) at T = 298.15 K. J. Chem. Thermodyn. 43, 1583–1590 (2011)

    Article  CAS  Google Scholar 

  34. Heintz, A., Papaioannou, D.: Excess enthalpies of alcohol + amine mixtures. Experimental results and theoretical description using the ERAS-model. Thermochim. Acta 310, 69–76 (1998)

    Article  CAS  Google Scholar 

  35. Oswal, S.: Studies of viscosity and excess molar volume of binary mixtures: 5. Characterization of excess molar volume of 1-alkanol with alkylamines, dialkylamines and trialkylamines in terms of the ERAS Model. Thermochim. Acta 425, 59–68 (2005)

    CAS  Google Scholar 

  36. Redlich, O., Kister, A.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)

    Article  Google Scholar 

  37. Funke, H., Wetzel, W., Heintz, A.: New applications of the ERAS model. Thermodynamics of amine + alkane and alcohol + amine mixtures. Pure Appl. Chem. 61, 1429–1439 (1989)

    Article  CAS  Google Scholar 

  38. Domańska, U., Laskowska, M.: Phase equilibria and volumetric properties of (1-ethyl-3-methylimidazolium ethylsulfate + alcohol or water) binary systems. J. Solution Chem. 37, 1271–1287 (2008)

    Article  Google Scholar 

  39. González, J.A., de la Fuentá, I.G., Cobos, J.C.: Thermodynamics of mixtures with strongly negative deviations from Raoult’s law: Part 4. Application of the DISQUAC model to mixtures of 1-alkanols with primary or secondary linear amines. Comparison with dortmund UNIFAC and ERAS Results. Fluid Phase Equilib. 168, 31–58 (2000)

    Article  Google Scholar 

  40. Zaichikov, A., Krestyaninov, M., Antonova, O.: Thermodynamic characteristics of self-associated aminoalcohols. J. Therm. Anal. Calorim. 115, 1857–1861 (2014)

    Article  CAS  Google Scholar 

  41. Shirazi, S.G., Kermanpour, F.: Density and viscosity of 2-butanol + (1-propanol, 2-propanol, or 3-amino-1-propanol) mixtures at temperatures of (293.15 to 323.15) K: application of the ERAS model. J. Chem. Eng. Data 64, 2292–2302 (2019)

    Article  CAS  Google Scholar 

  42. Villa, S., Riesco, N., de la Fuente, I.G.A., González, J., Cobos, J.: Thermodynamics of mixtures with strongly negative deviations from Raoult’s law. Part 8. Excess molar volumes at 298.15 K for 1-alkanol + isomeric amine (C6H15N) systems: characterization in terms of the ERAS model. Fluid Phase Equilib. 216, 123–133 (2004)

    Article  CAS  Google Scholar 

  43. Benson, G.C., Kiyohara, O.: Evaluation of excess isentropic compressibilities and isochoric heat capacities. J. Chem. Thermodyn. 11, 1061–1064 (1979)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Bu-Ali Sina University for providing the necessary facilities to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Iloukhani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forghani, F., Iloukhani, H. & Khanlarzadeh, K. Volumetric and Acoustic Investigation on the Binary Mixtures of Monoethanolamine + 1-Alcohols (C3–C6) at Different Temperatures from Experimental and Theoretical Points of View. J Solution Chem 52, 385–412 (2023). https://doi.org/10.1007/s10953-022-01236-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01236-1

Keywords

Navigation