Skip to main content
Log in

Estimation of Thermal Conductivities for Binary and Ternary Liquid Mixtures Using Excess Thermal Conductivity Model

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The objective of this work is the estimation of thermal conductivities for binary and ternary liquid mixtures using an excess thermal conductivity model. Firstly, calculation methods for thermal conductivities of ideal solutions are discussed using four models, including mole fraction average, One intuitively similar to Eyring’s model for kinematic viscosity and mass fraction average. Next, the Wilson-ThermConduct model was applied as the excess thermal conductivity model. The binary parameters in the model were determined from non-aqueous and aqueous binary thermal conductivity data. The prediction of the thermal conductivities for the ternary systems was done using the binary parameters of the binary constituent systems. The model presented in this work gave a 0.66% average absolute relative deviation of overall datasets. The evaluated results were compared with those using the mass fraction average (ideal) model, the Vredeveld’s power-law model, and Rowley’s local composition model with NRTL parameters determined from VLE data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AAD:

Average absolute deviation (W·m1·K1)

AARD:

Average absolute relative deviation (%)

F obj :

Objective function

G :

Gibbs free energy

G ij :

Binary parameter of the NRTL model

k :

Eyring’s empirical constant

M :

Molecular weight

NC:

Number of components

NDP:

Number of data points

PR:

Peng–Robinson

PT:

Patel–Teja

R :

Gas constant = 8.314 (J·mol1·K1)

T :

Temperature (K)

TC:

Thermal conductivity

w :

Liquid mass fraction

x :

Liquid mole fraction

λ:

Thermal conductivity (W·m1·K1)

Λij, Λji :

Parameter in the Wilson-ThermConduct model

Δ1 :

Absolute deviation between experimental and calculated thermal conductivities (W·m1·K1) defined as λexptl.− λcalcd.

Δ2 :

Relative deviation between experimental and calculated thermal conductivities defined as (λexptl.− λcalcd.)/λexptl.

E:

Excess property

1, 2, i, j :

Components 1, 2, i, and j

calcd.:

Calculated

exptl.:

Experimental

max.:

Maximum

References

  1. Hagiwara, K., Arai, Y.: Measurement and prediction of thermal conductivity of liquid organic compounds. Netsu Bussei 1(2), 52–61 (1987)

    Article  Google Scholar 

  2. Heckenberger, T., Stephan, K.: Cubic equations of state for transport properties: an equation for the thermal conductivity of oxygen. Int. J. Thermophys. 11(6), 1011–1023 (1990)

    Article  CAS  Google Scholar 

  3. Heckenberger, T., Stephan, K.: Cubic equations of state for transport properties. Int. J. Thermophys. 12(2), 333–356 (1991)

    Article  CAS  Google Scholar 

  4. Guo, X.Q., Sun, C.Y., Rong, S.X., Chen, G.J., Guo, T.M.: Equation of state analog correlations for the viscosity and thermal conductivity of hydrocarbons and reservoir fluids. J. Pet. Sci. Eng. 30(1), 15–27 (2001)

    Article  CAS  Google Scholar 

  5. Amooey, A.A.: A simple correlation to predict thermal conductivity of supercritical carbon dioxide. J. Supercrit. Fluids 86, 1–3 (2014)

    Article  CAS  Google Scholar 

  6. Hopp, M., Gross, J.: Thermal conductivity of real substances from excess entropy scaling using PCP-SAFT. Ind. Eng. Chem. Res. 56(15), 4527–4538 (2017)

    Article  CAS  Google Scholar 

  7. Khosharay, S., Khosharay, K., Nicola, G.D., Pierantozzi, M.: Modelling investigation on the thermal conductivity of pure liquid, vapour, and supercritical refrigerants and their mixtures by using Heyen EOS. Phys. Chem. Liq. 56(1), 124–140 (2018)

    Article  CAS  Google Scholar 

  8. Cardona, L.F., Forero, L.A., Velásquez, J.A.: Correlation and prediction of thermal conductivity using the Redlich-Kwong cubic equation of state and the geometric similitude concept for pure substances and mixtures. Ind. Eng. Chem. Res. 58(51), 23417–23437 (2019)

    Article  CAS  Google Scholar 

  9. Najafi, A.M., Hamzehie, E., Najibi, H., Soleimani, M., Gerven, T.V., Bruggen, B.V.D., Mazinani, S.: Thermal conductivity prediction of pure liquids using multi-layer perceptron neural network. J. Thermophys. Heat Transf. 29, 197–202 (2015)

    Article  CAS  Google Scholar 

  10. Pierantozzi, M., Petrucci, G.: Modeling thermal conductivity in refrigerants through neural networks. Fluid Phase Equilib. 460, 36–44 (2018)

    Article  CAS  Google Scholar 

  11. Cardona, L.F., Valderrama, J.O.: Physical and transport properties of ionic liquids using the geometric similitude concept and a cubic equation of state. Part 1: thermal conductivity and speed of sound of pure substances. J. Mol. Liq. 315, 113681 (2020)

    Article  CAS  Google Scholar 

  12. Cardona, L.F., Valderrama, J.O.: Physical and transport properties of ionic liquids using geometric similitude and a cubic equation of state. Part 2: thermal conductivity, and speed of sound of water + ionic liquid mixtures. J. Mol. Liq. 317, 113926 (2020)

    Article  CAS  Google Scholar 

  13. Niksirat, M., Aeenjan, F., Khosharay, S.: Introducing hydrogen bonding contribution to the Patel-Teja thermal conductivity equation of state for hydrochlorofluorocarbons, hydrofluorocarbons and hydrofluoroolefins. J. Mol. Liq. 351, 118631 (2022)

    Article  CAS  Google Scholar 

  14. Quiñones-Cisneros, S.E., Pollak, S., Schmidt, K.A.G.: Friction theory model for thermal conductivity. J. Chem. Eng. Data 66(11), 4215–4227 (2021)

    Article  Google Scholar 

  15. Li, C.C.: Thermal conductivity of liquid mixtures. AIChE J. 22(5), 927–930 (1976)

    Article  CAS  Google Scholar 

  16. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids, 5th edn. McGraw-Hill, New York (2001)

    Google Scholar 

  17. Rowley, R.L.: A local composition model for multicomponent liquid mixture thermal conductivities. Chem. Eng. Sci. 37(6), 897–904 (1982)

    Article  CAS  Google Scholar 

  18. Rowley, R.L.: Ternary liquid mixture thermal conductivities. Chem. Eng. Sci. 43(2), 361–371 (1988)

    Article  CAS  Google Scholar 

  19. Wang, P., Anderko, A.: Modeling thermal conductivity of concentrated and mixed-solvent electrolyte systems. Ind. Eng. Chem. Res. 47(15), 5698–5709 (2008)

    Article  CAS  Google Scholar 

  20. Glasstone, S., Laidler, K. J., Eyring, H.: The Theory of Rate Processes, translated by S. Hasegawa, N. Hirai, H. Goto. McGraw-Hill, New York, 1941 (Chapter 9) Yoshioka Shoten, Tokyo (1964)

  21. Tochigi, K., Mizuta, T., Yoshino, K.: Proceedings of the 5th International Symposium on Separation Technology—Korea and Japan, Seoul, 19–21 August 1999

  22. Tochigi, K., Yoshino, K., Rattan, V.K.: Prediction of kinematic viscosities for binary and ternary liquid mixtures with an ASOG-VISCO group contribution method. Int. J. Thermophys. 26(2), 413–419 (2004)

    Article  Google Scholar 

  23. Tochigi, K., Okamura, T., Rattan, V.K.: Prediction of high-pressure viscosities for binary liquid mixtures using the EOS-GE mixing rule with low-pressure viscosity data. Fluid Phase Equilib. 257(2), 228–232 (2007)

    Article  CAS  Google Scholar 

  24. Matsuda, H., Kurihara, K., Tochigi, K., Funazukuri, T., Rattan, V.K.: Estimation of kinematic viscosities for CO2 expanded liquids by ASOG-VISCO model. Fluid Phase Equilib. 470, 188–192 (2018)

    Article  CAS  Google Scholar 

  25. Matsuda, H., Tochigi, K., Kurihara, K., Funazukuri, T., Rattan, V.K.: Estimation of kinematic viscosities for multi-component systems using modified Eyring and activity coefficient model. Fluid Phase Equilib. 492, 137–144 (2019)

    Article  CAS  Google Scholar 

  26. Powell, R.E., Roseveare, W.E., Eyring, H.: Diffusion, thermal conductivity, and viscous flow of liquids. Ind. Eng. Chem. 33(4), 430–435 (1941)

    Article  CAS  Google Scholar 

  27. Wilson, G.: Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86(2), 127–130 (1964)

    Article  CAS  Google Scholar 

  28. Stephan, K., Hildwein, H.: Recommended Data of Selected Compounds and Binary Mixtures, DECHEMA Chemistry Data Series, vol. IV, Parts 1 and 2, Frankfurt (1987)

  29. Ogiwara, K., Arai, Y., Saito, S.: Thermal conductivities of liquid hydrocarbons and their binary mixtures. Ind. Eng. Chem. Fundam. 19(3), 295–300 (1980)

    Article  CAS  Google Scholar 

  30. Ogiwara, K., Arai, Y., Saito, S.: Thermal conductivities of liquid alcohols and their binary mixtures. J. Chem. Eng. Jpn. 15(5), 335–342 (1982)

    Article  CAS  Google Scholar 

  31. Qun-Fang, L., Rui-Sen, L., Dan-Yan, N., Yu-Chun, H.: Thermal conductivities of some organic solvents and their binary mixtures. J. Chem. Eng. Data 42(5), 971–974 (1997)

    Article  Google Scholar 

  32. Assael, M.J., Charitidou, E., Wakeham, W.A.: Absolute measurements of the thermal conductivity of mixtures of alcohols with water. Int. J. Thermophys. 10(4), 793–803 (1989)

    Article  CAS  Google Scholar 

  33. Rowley, R.L., White, G.L.: Thermal conductivities of ternary liquid mixtures. J. Chem. Eng. Data 32(1), 63–69 (1987)

    Article  CAS  Google Scholar 

  34. Jamieson, D.T., Irving, J.B., Tudhope, J.S.: The Thermal Conductivity of Liquids: A Survey to 1973. HMSO, London (1974)

    Google Scholar 

  35. Derr, E.L., Deal, C.H.: Institution of Chemical Engineers Symposium Series, vol. 32, Chapter 3, pp. 40. Institution of Chemical Engineers, London (1969)

    Google Scholar 

  36. Kojima, K., Tochigi, K.: Prediction of Vapor–Liquid Equilibria by ASOG Method. Kodansha-Elsevier, Tokyo (1979)

    Google Scholar 

  37. Tochigi, K., Tiegs, D., Gmehling, J., Kojima, K.: Determination of new ASOG parameters. J. Chem. Eng. Jpn. 23(4), 453–463 (1990)

    Article  CAS  Google Scholar 

  38. Tochigi, K., Gmehling, J.: Determination of ASOG parameters-extension and revision. J. Chem. Eng. Jpn. 44(5), 304–306 (2011)

    Article  CAS  Google Scholar 

  39. Tochigi, K., Matsuda, H., Kojima, K., Funazukuri, T., Rattan, V.K.: Abstract of JCEJ 2020 Annual Meeting, Online (2020)

  40. Tochigi, K., Matsuda, H., Kojima, K., Funazukuri, T.: Abstract of 2020 AIChE Annual Meeting, Online (2020)

  41. Novak, L.T.: Modeling the viscosity of liquid mixtures: polymer-solvent systems. Ind. Eng. Chem. Res. 42(8), 1824–1826 (2003)

    Article  CAS  Google Scholar 

  42. Xu, Y., Tang, X., Li, J., Zhu, X.: Viscosity estimation of ternary mixtures containing ionic liquid from their binary subsystems: a comparison of three viscosity equations. Fluid Phase Equilib. 427, 166–174 (2016)

    Article  CAS  Google Scholar 

  43. Gmehling, J., Onken, U., Arlt, W., Grenzheuser, P., Weidlich, U., Kolbe, B., Rarey, J.: DECHEMA Chemistry Data Series, vol. I. DECHEMA (1980–1990)

Download references

Author information

Authors and Affiliations

Authors

Contributions

HM and KT contributed to conceptualization, formal analysis, investigation, methodology, software, and writing—original draft preparation; KT contributed to data curation; HM and KK contributed to funding acquisition and resources; HM contributed to project administration; KT and TF contributed to supervision; TF contributed to validation; KT contributed to visualization; KK and TF contributed to writing—review and editing.

Corresponding author

Correspondence to Hiroyuki Matsuda.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, H., Tochigi, K., Kurihara, K. et al. Estimation of Thermal Conductivities for Binary and Ternary Liquid Mixtures Using Excess Thermal Conductivity Model. J Solution Chem 52, 105–133 (2023). https://doi.org/10.1007/s10953-022-01220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01220-9

Keywords

Navigation