Skip to main content
Log in

Experimental and Theoretical Studies on the Interaction of Dopamine Hydrochloride with Nicotinic Acid

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Cyclic voltammetry (CV), 1H nuclear magnetic resonance (1H NMR), density functional theory (DFT), quantum theory of atoms in molecules (QTAIM) and reduced density gradient (RDG) were used to study the interactions of dopamine hydrochloride (DH) with nicotinic acid (NAC) in aqueous solution. The results revealed that there existed three weak interactions in the DH–NAC system, C–H···π, π···π stacking and hydrogen bonds. These interactions showed different effects on the DH electrooxidation and its chemical environment. Moreover, the CV and 1H NMR results indicated that C–H···π interaction between the H atoms on the benzene ring of DH and the pyridine ring of NAC, and π···π stacking between the benzene ring of DH and the pyridine ring of NAC are the main interactions in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Broome, S.T., Louangaphay, K., Keay, K.A., Leggio, G.M., Musumeci, G., Castorina, A.: Dopamine: an immune transmitter. Neural. Regen. Res. 15(12), 2173–2185 (2020)

    Article  Google Scholar 

  2. Bucolo, C., Leggio, G.M., Drago, F., Salomone, S.: Dopamine outside the brain: the eye, cardiovascular system and endocrine pancreas. Pharmacol. Therapeut. 203, 107392 (2019)

    Article  CAS  Google Scholar 

  3. Klein, M.O., Battagello, D.S., Cardoso, A.R., Hauser, D.N., Bittencourt, J.C., Correa, R.G.: Dopamine: functions, signaling, and association with neurological disease. Cell. Mol. Neurobiol. 39(1), 31–59 (2019)

    Article  PubMed  Google Scholar 

  4. Li, Y.Y., Chiu, C.C., Wang, J.J., Chen, Y.W., Hung, C.H.: Dopamine enhancement of dextrorphan-induced skin antinociception in response to needle pinpricks in rats. Pharmacol. Rep. 71(4), 732–737 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. Li, J., Duan, H.Y., Wei, W.Z., Luo, S.L.: Spectrometric investigations on the binding of dopamine to bovine serum albumin. Phys. Chem. Liq. 50(4), 453–464 (2012)

    Article  CAS  Google Scholar 

  6. Djemil, R., Khatmi, D.: Quantum mechanical study of complexation of dopamine and epinephrine with β-cyclodextrin using PM6, ONIOM and NBO analysis. J. Comput. Theor. Nanosci. 9(10), 1571–1576 (2012)

    Article  CAS  Google Scholar 

  7. Liu, M.M., Han, S.M., Zheng, X.W., Han, L.L., Liu, T., Yu, Z.Y.: Experimental and theoretical prediction of the redox potential of dopamine and its supramolecular complex with glycine. Int. J. Electrochem. Sci. 10, 235–247 (2015)

    Google Scholar 

  8. Zhai, C.P., Peng, P., Liu, X.J., Chen, X., Li, L.N.: Experimental and theoretical study on the interactions between dopamine hydrochloride and nicotinamide. J. Mol. Struct. 1178, 599–605 (2019)

    Article  CAS  Google Scholar 

  9. Zhai, C.P., Sun, F., Zhang, P., Ma, H.T., Song, A.X., Hao, J.C.: Interactions of dopamine and dopamine hydrochloride with ethanol. J. Mol. Liq. 223, 420–426 (2016)

    Article  CAS  Google Scholar 

  10. Zhang, P., Peng, P., Hou, B.B., Zhai, C.P.: Hydrogen bond interactions of dopamine hydrochloride with urea. Phys. Chem. Liq. 57(6), 746–754 (2019)

    Article  CAS  Google Scholar 

  11. Zhai, C.P., Ma, H.T., Sun, F., Li, L.N., Song, A.X.: Experimental and theoretical study on the interaction of dopamine hydrochloride with H2O. J. Mol. Liq. 215, 481–485 (2016)

    Article  CAS  Google Scholar 

  12. Hegyi, J., Schwartz, R.A., Hegyi, V.: Pellagra: dermatitis, dementia, and diarrhea. Int. J. Dermatol. 43(1), 1–5 (2004)

    Article  PubMed  Google Scholar 

  13. Gonçalves, E.M., Joseph, A., Conceição, A.C.L., da Piedade, M.E.M.: Potentiometric titration study of the temperature and ionic strength dependence of the acidity constants of nicotinic acid (niacin). J. Chem. Eng. Data 56(6), 2964–2970 (2011)

    Article  Google Scholar 

  14. Hellenbrand, W., Boeing, H., Robra, B.-P., Seidler, A., Vieregge, P., Nischan, P., Joerg, J., Oertel, W.H., Schneider, E., Ulm, G.: Diet and Parkinson’s disease II: a possible role for the past intake of specific nutrients. results from a self-administered food-frequency questionnaire in a case-control study. Neurology 47(3), 644–650 (1996)

    Article  CAS  PubMed  Google Scholar 

  15. Fall, P.-A., Fredrikson, M., Axelson, O., Granérus, A.-K.: Nutritional and occupational factors influencing the risk of Parkinson’s disease: a case-control study in Southeastern Sweden. Movement Disord. 14(1), 28–37 (1999)

    Article  CAS  PubMed  Google Scholar 

  16. Abdullah, K.M., Alam, M.M., Iqbal, Z., Naseem, I.: Therapeutic effect of vitamin B3 on hyperglycemia, oxidative stress and DNA damage in alloxan induced diabetic rat model. Biomed. Pharmacother 105, 1223–1231 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. Tyunina, E.Y., Badelin, V.G., Mezhevoi, I.N.: Study on the interaction of nicotinic acid with L-phenylalanine in buffer solution by heat capacity measurements at various temperatures. J. Solution Chem. 46(2), 249–258 (2017)

    Article  CAS  Google Scholar 

  18. Terekhova, I.V., De Lisi, R., Lazzara, G., Milioto, S., Muratore, N.: Volume and heat capacity studies to evidence interactions between cyclodextrins and nicotinic acid in water. J. Therm. Anal. Calorim. 92(1), 285–290 (2008)

    Article  CAS  Google Scholar 

  19. Badelin, V.G., Tyunina, E.Y., Nezhevoi, I.N., Tarasova, G.N.: Thermodynamic characteristics of molecular interactions between L-tryptophan and nicotinic acid and uracyl in aqueous buffer solutions at 298 K. Russ. J. Phys. Chem. A 89(12), 2229–2233 (2015)

    Article  CAS  Google Scholar 

  20. Nakashima, Y., Sanada, H., Utsuki, Y., Kawada, S.: Effect of nicotinic acid on catecholamine synthesis in rat brain. J. Nutr. Sci. Vitaminol. 24(2), 67–76 (1978)

    Article  CAS  PubMed  Google Scholar 

  21. Kim, B., Kim, J.E., Lee, S.M., Lee, S.H., Lee, J.W., Kim, M.K., Lee, K.J., Kim, H., Lee, J.D., Choi, K.Y.: N-nicotinoyl dopamine, a novel niacinamide derivative, retains high antioxidant activity and inhibits skin pigmentation. Exp. Dermatol. 20(11), 943–958 (2011)

    Article  Google Scholar 

  22. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision D. 01, Gaussian Inc., Wallingford (2009)

  23. Chacón, K.N., Espinal, J.F., Montero-Campillo, M.M., Yáñez, M., Mejía, S.M.: Looking for the azeotrope: a computational study of (ethanol)6–water, (methanol)6–water, (ethanol)7, and (methanol)7 heptamers. J. Phys. Chem. A 124, 7080–7087 (2020)

    Article  PubMed  Google Scholar 

  24. Su, T.Z., Tang, Z., Yin, C., Yang, Y., Wang, H.T., Peng, L., Su, Y.Z., Su, P.F., Li, J.: Insights into quaternary ammonium-based ionic liquids series with tetrafluoroborate anion for CO2 capture. J. Mol. Liq. 327, 114857 (2021)

    Article  CAS  Google Scholar 

  25. Boys, S.F., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19(4), 553–566 (1970)

    Article  CAS  Google Scholar 

  26. Lu, T., Chen, F.W.: Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012)

    Article  PubMed  Google Scholar 

  27. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graphics 14(1), 33–38 (1996)

    Article  CAS  Google Scholar 

  28. Sun, Y.L., Chen, M.F., Chen, L.G., Wang, X.L., Wang, T.: Electrochemical behaviors of ceftazidime at Gr/GCE and its interaction with DNA studied by fluorescence and CV method. Int. J. Electrochem. Sci. 14, 6522–6531 (2019)

    Article  CAS  Google Scholar 

  29. Bagnoa, A., Rastrellia, F., Saiellib, G.: NMR techniques for the investigation of solvation phenomena and non-covalent interactions. Prog. Nucl. Mag. Resonan. Spectrosc. 47, 41–93 (2005)

    Article  Google Scholar 

  30. Nishio, M.: The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys. Chem. Chem. Phys. 13, 13873–13900 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. Cheng, H., Qin, C., Yang, B., Hu, X.J., Waigi, M.G., Vasilyeva, G.K., Gao, Y.Z.: Non-covalent binding interaction between phthalic acid esters and DNA. Environ. Int. 161, 107095 (2022)

    Article  CAS  PubMed  Google Scholar 

  32. Curtis, M.D., Cao, J., Kampf, J.W.: Solid-state packing of conjugated oligomers: from π-stacks to the herringbone structure. J. Am. Chem. Soc. 126(13), 4318–4328 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. Jennings, W.B., Farrell, B.M., Malone, J.F.: Stereodynamics and edge-to-face CH-π aromatic interactions in O-phenethyl-substituted biaryls. J. Org. Chem. 71(6), 2277–2282 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. Malathy Sony, S.M., Ponnuswamy, M.N.: Nature of π-interactions in nitrogen-containing heterocyclic systems: a structural database analysis. Cryst. Growth Des. 6(3), 736–742 (2006)

    Article  Google Scholar 

  35. Mohan, N., Vijayalakshmi, K.P., Koga, N., Suresh, C.H.: Comparison of aromatic NH···π, OH···π, and CH···π interactions of alanine using MP2, CCSD, and DFT methods. J. Comput. Chem. 31(16), 2874–2882 (2010)

    CAS  PubMed  Google Scholar 

  36. Bondi, A.: Van der Waals volumes and radii. J. Phys. Chem. 68(3), 441–451 (1964)

    Article  CAS  Google Scholar 

  37. Wang, H.K., Huang, Z.G., Shen, T.T., Guo, L.F.: Hydrogen-bonding interactions in adrenaline-water complexes: DFT and QTAIM studies of structures, properties, and topologies. J. Mol. Model. 18(7), 3113–3123 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. Huang, Z.G., Dai, Y.M., Yu, L.: Density functional theory and topological analysis on the hydrogen bonding interactions in N-protonated adrenaline-DMSO complexes. Struct. Chem. 21(4), 863–872 (2010)

    Article  CAS  Google Scholar 

  39. Kirn, C.K., Zhang, H., Yoon, S.H., Won, J., Lee, M.J., Kim, C.K.: Effects of basis set superposition error on optimized geometries and complexation energies of organo-alkali metal cation complexes. J. Phys. Chem. A 113(2), 513–519 (2009)

    Article  Google Scholar 

  40. Quiñonero, D., Frontera, A., Garau, C., Ballester, P., Costa, A., Deyà, P.M.: Interplay between cation-π, anion-π and π-π interaction. ChemPhysChem 7(12), 2487–2491 (2006)

    Article  PubMed  Google Scholar 

  41. Gil, A., Branchadell, V., Calhorda, M.J.: A theoretical study of methylation and CH/π interactions in DNA intercalation: methylated 1,10-phenanthroline in adenine-thymine base pairs. RSC Adv. 6(89), 85891–85902 (2016)

    Article  CAS  Google Scholar 

  42. Nakanishi, W., Hayashi, S., Narahara, K.: Atoms-in-molecules dual parameter analysis of weak to strong interactions: behaviors of electronic energy densities versus laplacian of electron densities at bond critical points. J. Phys. Chem. A 112(51), 13593–13599 (2008)

    Article  CAS  PubMed  Google Scholar 

  43. Koch, U., Popelier, P.L.A.: Characterization of C-H-O hydrogen bonds on the basis of the charge density. J. Phys. Chem. 99(24), 9747–9754 (1995)

    Article  CAS  Google Scholar 

  44. Parthasarathi, R., Subramanian, V., Sathyamurthy, N.: Hydrogen bonding without borders: an atoms-in-molecules perspective. J. Phys. Chem. A 110(10), 3349–3351 (2006)

    Article  CAS  PubMed  Google Scholar 

  45. Kazachenko, A.S., Akman, F., Abdelmoulahi, H., Issaoui, N., Malyar, Y.N., Al-Dossary, O., Wojcik, M.J.: Intermolecular hydrogen bonds interactions in water clusters of ammonium sulfamate: FTIR, X-ray diffraction, AIM, DFT, RDG, ELF. NBO analysis. J. Mol. Liq. 342, 117475 (2021)

    Article  CAS  Google Scholar 

  46. Johnson, E.R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A.J., Yang, W.T.: Revealing noncovalent interactions. J. Am. Chem. Soc. 132(18), 6498–6506 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, Y.N., Li, J.W., Yin, Z.P., Zhang, J., Guo, W.Y., Wang, M.H.: Quantum chemical study of the carbon dioxide-philicity of surfactants: effects of tail functionalization. Langmuir 36, 15352–15361 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Teacher Education Curriculum Reform Research Project of Henan Province (2020-JSJYZD-019) and the National Natural Science Foundation of China (21603059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuejun Liu or Xin Chen.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, M., Wu, Y., Li, T. et al. Experimental and Theoretical Studies on the Interaction of Dopamine Hydrochloride with Nicotinic Acid. J Solution Chem 51, 1508–1521 (2022). https://doi.org/10.1007/s10953-022-01206-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01206-7

Keywords

Navigation