Skip to main content
Log in

Entrainers Selection and Vapor–Liquid Equilibrium Measurements for Separation of p-Xylene from Ethylbenzene at 101.3 kPa

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this paper, the separation of the p-xylene and ethylbenzene was explored. The COSMO-SAC-UNIFAC model, σ-profile analysis, solvent power and selectivity were used to screen for a suitable solvent for this process. Then, 1,2,4-trichlorobenzene was selected as target solvent to extract the p-xylene from ethylbenzene. The vapor–liquid-phase equilibrium (VLE) data for binary systems of p-xylene + ethylbenzene, p-xylene + 1,2,4-trichlorobenzene, and ethylbenzene + 1,2,4-trichlorobenzene and ternary system of p-xylene + ethylbenzene + 1,2,4-trichlorobenzene were determined with a modified Rose still at atmospheric pressure (101.3 kPa) and all the binary data passed the Wisniak’s test, which accorded with the thermodynamic consistency. Three thermodynamic models, Wilson, NRTL and UNIQUAC were used to correlate the VLE data and get binary interaction parameters, then the ternary VLE data of p-xylene + ethylbenzene + 1,2,4-trichlorobenzene were estimated based on these model parameters using Aspen Plus V10. The estimation values of the three models are in good agreement with the experimental data. Moreover, the effect of 1,2,4-trichlorobenzene was analyzed and it was found to be an effective candidate extractant for the extractive distillation of ethylbenzene from mixed xylenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhu, L.: Production technology status and development trend of mixed xylene. Henan Chem. Ind. 27(10), 77–78 (2010)

    Google Scholar 

  2. Tang, Z.S.: Present situation of production and consumption of isophthalic acid and its prospect. Hunan Chem. Ind. 4, 33 (1992)

    Google Scholar 

  3. Guan, D.S.: Scientific and technological progress in the production of aromatics from xylene. Petrol. Chem. Transl. 1, 12 (1989)

    Google Scholar 

  4. Jiang, H., Wang, W.Y.: Production and comprehensive utilization of phthalic anhydride. Chem. Times 5, 22 (1993)

    Google Scholar 

  5. Zheng, L.C.: Separation and utilization of xylene. Lubri. Fuel 014(005), 17–25 (2004)

    Google Scholar 

  6. Lu, J.M.: Domestic phenylacetic acid production and market conditions. Chem. Technol. Mark. 3, 12–14 (2001)

    Google Scholar 

  7. Yu, Y.: Progress in the separation technology of C8 aromatic hydrocarbon isomomer. Guangdong Chem. Ind. 37(09), 83–85 (2010)

    CAS  Google Scholar 

  8. Luo, Q., Sun, C.J.: Progress in separation of xylene and ethylbenzene in C8 aromatic hydrocarbon. Modern Chem. Ind. 8, 23–26 (2005)

    Google Scholar 

  9. Technical Information Office of Shenyang Institute of Chemical Industry: Technical trends of separation and isomerization of xylenes, vol. 1, pp. 44–52. Shenyang Huagong (1976)

    Google Scholar 

  10. Zhou, X.J., Li, G.D., Li, Y., Zhan, F.: Extraction and distillation separation of substances with similar boiling point. J. Nanjing Normal Univ. (Nat. Sci. Ed.) 4, 57–59 (1999)

    Google Scholar 

  11. Yang, Y.M., Hao, C., Hu, J.: Progress in separation of xylene isomers by special distillation method. Anhui Chem. Ind. 42(01), 22–25 (2016)

    CAS  Google Scholar 

  12. Chianese, A., Marrelli, L.: Isobaric vapor–liquid equilibria of the ethylbenzene-p-xylene system. J. Chem. Eng. Data 30, 424 (1985)

    Article  CAS  Google Scholar 

  13. Rodrigues, W.L., Mattedi, S., Abreu, J.C.N.: Vapor–liquid equilibria data for binary systems of ethylbenzene + xylene isomers at 100.65 kPa. J. Chem. Eng. Data 50, 1134–1138 (2005)

    Article  CAS  Google Scholar 

  14. Kutsarov, R., Ralev, N., Sharlopov, V.Z.: Liquid–vapor phase equilibria of binary systems from C6–8 aromatic hydrocarbons. Prikl. Khim. (S.-Peterburg) 66, 567–573 (1993)

    CAS  Google Scholar 

  15. Wisniak, J., Ortega, J., Fernández, L.: A fresh look at the thermodynamic consistency of vapour-liquid equilibria data. J. Chem. Thermodyn. 105, 385–395 (2017)

    Article  CAS  Google Scholar 

  16. Wisniak, J.: A new test for the thermodynamic consistency of vapor–liquid equilibrium. Ind. Eng. Chem. Res. 32, 1531–1533 (1993)

    Article  CAS  Google Scholar 

  17. Wilson, G.M.: Vapor–liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86, 127–130 (1964)

    Article  CAS  Google Scholar 

  18. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968)

    Article  CAS  Google Scholar 

  19. Abrams, D.S., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21, 116–128 (1975)

    Article  CAS  Google Scholar 

  20. Li, M., Yu, Y.M., Zhang, L.L., Li, J., Song, Y.H.: Isobaric binary and ternary vapor–liquid equilibrium for the mixture of n-hexane, methylcyclopentane and N-methylpyrrolidone. J. Solution Chem. 50, 1258–1284 (2021)

    Article  CAS  Google Scholar 

  21. Chang, W.X., Xu, X.R., Li, X.L.: Isobaric vapor–liquid equilibrium of water—acetic acid—pentyl acetate system. J. Chem. Eng. 56(08), 6–11 (2005)

    Google Scholar 

  22. Li, X.L., Chang, W.X., Wan, H.: Gas–liquid equilibrium study of isopropyl acetate–acetic acid–water system. J. Chem. Eng. Coll. Univ. 20(1), 7–11 (2006)

    Google Scholar 

  23. Wang, M., Feng, L.P.: Simulation and optimization of water acetate mixture separation by extraction distillation. J. Huaiyin Inst. Technol. 28(1), 9–14 (2019)

    Google Scholar 

  24. Song, H.H., Sun, W., Wang, X.L., Wang, M.T.: Research progress on solvent selection in extraction distillation. Chem. Ind. Eng. 1, 83–88 (2002)

    Google Scholar 

  25. Lloyd, B.: Separation of ethylbenzene from p- and m-xylene by extractive distillation using mixtures of oxygenated organic compounds. AlChE J. 29, 694–696 (1983)

    Article  Google Scholar 

  26. Lloyd, B.: The separation of ethylbenzene from p- and m-xylene by extractive distillation using mixtures of polychloro compounds. AlChE J. 26, 862–865 (1980)

    Article  Google Scholar 

  27. Meng, X.L., Li, R., Bing, X.B., Gao, J., Xu, D.M., Zhang, L.Z., Wang, Y.L.: Liquid–liquid equilibrium measurements and interaction exploration for separation of isobutyl alcohol + isobutyl acetate by imidazolium-based ionic liquids with different anions. J. Chem. Thermodyn. 141, 105932 (2020)

    Article  CAS  Google Scholar 

  28. Prausnitz, J.M.: Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice-Hall, Englewood Cliffs (1969)

    Google Scholar 

  29. Liu, K., Zhang, T., Ma, Y.X.: Vapour–liquid equilibrium measurements and correlation for separating azeotropic mixture (ethyl acetate + n-heptane) by extractive distillation. J. Chem. Thermodyn. 144, 106075 (2020)

    Article  CAS  Google Scholar 

  30. Ma, Y.X., Gao, J., Li, M.: Isobaric vapour–liquid equilibrium measurements and extractive distillation process for the azeotrope of (N,N-dimethylisopropylamine+ acetone). J. Chem. Thermodyn. 122, 154–161 (2018)

    Article  CAS  Google Scholar 

  31. Shi, P.Y., Gao, Y.C., Wu, J.Y.: Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol + water): Isobaric vapour-liquid phase equilibrium measurements and azeotropic distillation. J. Chem. Thermodyn. 118, 139–146 (2018)

    Article  Google Scholar 

  32. Zhang, Y., Wang, Z.J., Xu, X.: Entrainers selection and vapour-liquid equilibrium measurements for separating azeotropic mixtures (ethanol + n-hexane/cyclohexane) byextractive distillation. J. Chem. Thermodyn. 144, 106070 (2020)

    Article  CAS  Google Scholar 

  33. Dong, Y.C., Zhu, R.S., Guo, Y.Y., Lei, Z.G.: A united chemical thermodynamic model: COSMO-UNIFAC. Ind. Eng. Chem. Res. 57, 15954–15958 (2018)

    Article  CAS  Google Scholar 

  34. Zhu, R.S., Taheri, M., Zhang, J., Lei, Z.G.: Extension of the COSMO-UNIFAC thermodynamic model. Ind. Eng. Chem. Res. 59, 1693–1701 (2020)

    Article  CAS  Google Scholar 

  35. Dong, Y.C., Zhu, R.S., Guo, Y.Y., Lei, Z.G.: A united chemical thermodynamic model: COSMO-UNIFAC. Ind. Eng. Chem. Res. 57(46), 15954–15958 (2018)

    Article  CAS  Google Scholar 

  36. Mathias, P.M.: Guidelines for the analysis of vapor−liquid equilibrium data. J. Chem. Thermodyn. 62, 2231–2233 (2017)

    CAS  Google Scholar 

  37. Mathias, P.M.: Effect of VLE uncertainties on the design of separation sequences by distillation—study of the benzene−chloroform−acetone system. Fluid Phase Equilib. 408, 265–272 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Shandong Province (China, Grant No. ZR2020MB12)

Funding

This work was supported by State Key Laboratory of Heavy Oil Processing and Chambroad Chemical Industry Research Institute (SKLHOP202101007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingmin Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Li, M., Liu, L. et al. Entrainers Selection and Vapor–Liquid Equilibrium Measurements for Separation of p-Xylene from Ethylbenzene at 101.3 kPa. J Solution Chem 51, 1247–1267 (2022). https://doi.org/10.1007/s10953-022-01187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01187-7

Keywords

Navigation