Skip to main content
Log in

Development of Soave–Redlich–Kister Equation of State and Vapor–Liquid Equilibrium Modeling For Polar Pure Compounds and Binary Mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

By combining a dipole expression with an Soave–Redlich–Kister, SRK, equation of state, a new SRK equation of state is developed. a0, \(c_{i}\), b and bp, the parameters of this equation, were optimized for pure compounds by using experimental data of vapor pressure and saturated liquid density. Examining the modeling results for the dipolar compounds shows that this equation correlates well with their behavior. The physical properties of pure compounds, including the heat capacity, speed of sound, Joule–Thomson coefficient and enthalpy of evaporation were calculated using this equation of state, and were in good agreement with the experimental results. By combining a dipole expression with the SRK equation, a good improvement in the prediction of the Joule–Thomson coefficient of the liquid phase was made. Also, vapor–liquid equilibrium calculations were performed for four binary systems by using this SRK equation, which shows that the prediction of the system behavior by the revised SRK equation was improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A :

Helmholtz free energy, J or J·mol−1

a :

Attractive parameter in the SRK EoS (subscript m for mixing), J·m3

a 0 :

Equation of state parameter

b :

Co-volume of the SRK EOS (subscript m for mixing), m3⋅mol−1

c:

Equation of state parameter

C p :

Residual isobaric heat capacity, J⋅mol−1⋅K−1

C v :

Residual isochoric heat capacity, J⋅mol−1⋅K−1 dH = evaporation enthalpy, J

k ij :

Binary interaction parameter

L :

Liquid

m :

Chain length or number of segments within a molecule

N :

Number of particles

n :

Vector of molar composition, moles

P :

Pressure, Pa

R :

Gas constant = 8.314, J·mol−1⋅K−1

T :

Temperature, K

u :

Potential well depth for modified square well potential

u/k :

Segment interaction energy (subscript m for mixing), K

V :

Vapor

v :

Molar volume, m3⋅mol−1

x :

Mole fraction in the saturated liquid

y :

Molar fraction of component i in the vapor phase

Z :

Compressibility

ω:

Acentric factor

σ :

Temperature independent diameter

µ :

Dipole moment (subscript m for mixing), D

ρ :

Density, mol⋅m−3

η :

Packing fraction

ϕ :

Fugacity

ϲ :

Property at critical point

Dipole:

Dipolar property

i, j, k, n :

Indices

p :

Polar interaction

SRK:

Soave–Redlich–Kwong

exp:

Experimental

cal:

Calculated

res:

Residual property

 ~ :

A reduced quantity

References

  1. Nezbeda, I., Pavlíček, J.: Application of primitive models of association: a simple theoretical equation of state of water. Fluid Phase Equilib. 116(1), 530–536 (1996)

    Article  CAS  Google Scholar 

  2. Mueller, E.A., Gubbins, K.E.: An equation of state for water from a simplified intermolecular potential. Ind. Eng. Chem. Res. 34(10), 3662–3673 (1995)

    Article  CAS  Google Scholar 

  3. Jog, P.K., Sauer, S.G., Blaesing, J., Chapman, W.G.: Application of dipolar chain theory to the phase behavior of polar fluids and mixtures. Ind. Eng. Chem. Res. 40(21), 4641–4648 (2001)

    Article  CAS  Google Scholar 

  4. Kraska, T., Gubbins, K.E.: Phase equilibria calculations with a modified SAFT equation of state. 1. Pure alkanes, alkanols, and water. Ind. Eng. Chem. Res. 35(12), 4727–4737 (1996)

    Article  CAS  Google Scholar 

  5. Kolafa, J., Nezbeda, I.: The Lennard-Jones fluid: an accurate analytic and theoretically-based equation of state. Fluid Phase Equilib. 100, 1–34 (1994)

    Article  CAS  Google Scholar 

  6. Karakatsani, E.K., Spyriouni, T., Economou, I.G.: Extended statistical associating fluid theory (SAFT) equations of state for dipolar fluids. AIChE J. 51(8), 2328–2342 (2005)

    Article  CAS  Google Scholar 

  7. Perfetti, E., Thiery, R., Dubessy, J.: Equation of state taking into account dipolar interactions and association by hydrogen bonding: II—modelling liquid–vapour equilibria in the H2O–H2S, H2O–CH4 and H2O–CO2 systems. Chem. Geol. 251(1), 50–57 (2008)

    Article  CAS  Google Scholar 

  8. Gao, G.H., Tan, Z.Q., Yu, Y.X.: Calculation of high-pressure solubility of gas in aqueous electrolyte solution based on non-primitive mean spherical approximation and perturbation theory. Fluid Phase Equilib. 165(2), 169–182 (1999)

    Article  CAS  Google Scholar 

  9. Liu, Z., Wang, W., Li, Y.: An equation of state for electrolyte solutions by a combination of low-density expansion of non-primitive mean spherical approximation and statistical associating fluid theory. Fluid Phase Equilib. 227, 147–156 (2005)

    Article  CAS  Google Scholar 

  10. Sauer, S.G., Chapman, W.G.: A parametric study of dipolar chain theory with applications to ketone mixtures. Ind. Eng. Chem. Res. 42(22), 5687–5696 (2003)

    Article  CAS  Google Scholar 

  11. Román-Ramírez, L.A., García-Sánchez, F., Ortiz-Estrada, C.H., Justo-García, D.N.: Modeling of vapor−liquid equilibria for CO2 + 1-alkanol binary systems with the PC-SAFT equation of state using polar contributions. Ind. Eng. Chem. Res. 49(23), 12276–12283 (2010)

    Article  Google Scholar 

  12. Karakatsani, E.K., Economou, I.G.: Perturbed chain-statistical associating fluid theory extended to dipolar and quadrupolar molecular fluids. J. Phys. Chem. B 110(18), 9252–9261 (2006)

    Article  CAS  Google Scholar 

  13. Smith, S.A., Cripwell, J.T., Schwarz, C.E.: A quadrupolar SAFT-VR Mie approach to modeling binary mixtures of CO2 or benzene with n-alkanes or 1-alkanols. J. Chem. Eng. Data 65(12), 5778–5800 (2020)

    Article  CAS  Google Scholar 

  14. Gross, J.: An equation-of-state contribution for polar components : quadrupolar molecules. Aiche J. 51, 2556–2568 (2005)

    Article  CAS  Google Scholar 

  15. Larsen, B., Rasaiah, J.C., Stell, G.: Thermodynamic perturbation theory for multipolar and ionic liquids. Mol. Phys. 33(4), 987–1027 (1977)

    Article  CAS  Google Scholar 

  16. Sisco, C.J., Abutaqiya, M.I.L., Vargas, F.M., Chapman, W.G.: Cubic-plus-chain (CPC). II: function behavior of the chain-modified cubic equation of state. Ind. Eng. Chem. Res. 58(20), 8810–8816 (2019)

    Article  CAS  Google Scholar 

  17. Stell, G., Rasaiah, J.C., Narang, H.: Thermodynamic perturbation theory for simple polar fluids. II. Mol. Phys. 27(5), 1393–1414 (1974)

    Article  CAS  Google Scholar 

  18. Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases and Liquids, 4th edn. McGraw Hill, New York (1987)

    Google Scholar 

  19. Moine, E., Piña-Martinez, A., Jaubert, J.-N., Sirjean, B., Privat, R.: I-PC-SAFT: an industrialized version of the volume-translated PC-SAFT equation of state for pure components, resulting from experience acquired all through the years on the parameterization of SAFT-type and cubic models. Ind. Eng. Chem. Res. 58(45), 20815–20827 (2019)

    Article  CAS  Google Scholar 

  20. Green, D.W., Southard, M.Z.: Perry’s Chemical Engineers’ Handbook, 9th edn. McGraw-Hill, New York (2018)

    Google Scholar 

  21. Yaws, C.L.: Chemical Properties Handbook. McGraw-Hill, New York (1999)

    Google Scholar 

  22. Kobayashi, M., Nishiumi, H.: Vapor–liquid equilibria for the pure, binary and ternary systems containing HFC32, HFC125 and HFC134a. Fluid Phase Equilib. 144(1), 191–202 (1998)

    Article  CAS  Google Scholar 

  23. Ng, H.-J., Kalra, H., Robinson, D.B., Kubota, H.: Equilibrium phase properties of the toluene-hydrogen sulfide and heptane-hydrogen sulfide binary systems. J. Chem. Eng. Data 25(1), 51–55 (1980)

    Article  CAS  Google Scholar 

  24. Lim, J.S., Park, J.-Y., Lee, B.-G., Lee, Y.-W.: Phase equilibria of 1,1,1-trifluoroethane (HFC-143a) + 1,1,1,2-tetrafluoroethane (HFC-134a), and + 1,1-difluoroethane (HFC-152a) at 273.15, 293.15, 303.15, and 313.15 K. Fluid Phase Equilib 193(1), 29–39 (2002)

    Article  CAS  Google Scholar 

  25. Reamer, H.H., Selleck, F.T., Sage, B.H., Lacey, W.N.: Phase equilibria in hydrocarbon systems—volumetric and phase behavior of decane–hydrogen sulfide system. Ind. Eng. Chem. 45(8), 1810–1812 (1953)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Abbas Izadpanah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 63 kb)

Appendices

Appendix A

Equations for the Derivative Properties

This appendix lists the equations used to calculate the derivative properties in this work. These properties include reduced heat capacity at constant pressure and constant volume, reduced evaporation enthalpy, Joule–Thomson coefficient, and speed of velocity. Characteristics are presented in terms of reduced Helmholtz free energy.

Function F.

$$F = \frac{{A^{{{\text{res}}}} }}{RT}$$
(26)

Residual isochoric heat capacity.

$$c_{\upsilon }^{{{\text{res}}}} \left( {T,\upsilon ,n} \right) = - RT^{2} \left( {\frac{{\partial^{2} F}}{{\partial T^{2} }}} \right)_{\upsilon ,n} - 2RT\left( {\frac{\partial F}{{\partial T}}} \right)_{\upsilon ,n}$$
(27)

Residual isobaric heat capacity.

$$c_{p}^{{{\text{res}}}} \left( {T,\upsilon ,n} \right) = c_{\upsilon }^{{{\text{res}}}} \left( {T,\upsilon ,n} \right) - T\frac{{\left( {\frac{\partial P}{{\partial T}}} \right)_{\upsilon ,n}^{2} }}{{\left( {\frac{\partial P}{{\partial \upsilon }}} \right)_{T,n} }} - nR$$
(28)

Residual enthalpy.

$$\frac{{H^{res} \left( {T,\upsilon ,n} \right)}}{nRT} = Z - 1 - \frac{T}{n}\left( {\frac{\partial F}{{\partial T}}} \right)_{\upsilon ,n}$$
(29)

The Joule–Thomson coefficient.

$$\mu_{{{\text{JT}}}} = \left( {\frac{\partial T}{{\partial P}}} \right)_{H,n} = - \frac{1}{{c_{p} }}\left[ {\upsilon + \frac{{T\left( {\frac{\partial P}{{\partial T}}} \right)_{\upsilon ,n} }}{{\left( {\frac{\partial P}{{\partial \upsilon }}} \right)_{T,n} }}} \right]$$
(30)

The speed of sound.

$$u_{ss} = \sqrt { - \upsilon^{2} \frac{{c_{p} }}{{c_{\upsilon } }}\frac{{\left( {\frac{\partial P}{{\partial \upsilon }}} \right)_{T,n} }}{MW}}$$
(31)

where

$$\left( {\frac{\partial P}{{\partial \upsilon }}} \right)_{T,n} = - RT\left( {\frac{{\partial^{2} F}}{{\partial \upsilon^{2} }}} \right)_{T,n} - \frac{nRT}{{\upsilon^{2} }}$$
(32)
$$\left( {\frac{\partial P}{{\partial T}}} \right)_{\upsilon ,n} = - RT\left( {\frac{{\partial^{2} F}}{\partial \upsilon \partial T}} \right)_{n} - \frac{P}{T}$$
(33)
$$P = - RT\left( {\frac{\partial F}{{\partial \upsilon }}} \right)_{T,n}$$
(34)

MW is molecular weight. Enthalpy and heat capacity are expressed as a sum of two expressions: (a) an ideal gas expression (ig) which is a function of temperature, (b) and a reduced expression (res) derived from the equation of state. In this study, the \(C_{P}^{{{\text{ig}}}}\) have been calculated from the physical properties handbook [21]. The ideal gas heat capacity at constant volume (\(C_{V}^{{{\text{ig}}}}\)) and the enthalpy are calculated through their relation to \(C_{P}^{{{\text{ig}}}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahrami, A., Izadpanah, A.A. Development of Soave–Redlich–Kister Equation of State and Vapor–Liquid Equilibrium Modeling For Polar Pure Compounds and Binary Mixtures. J Solution Chem 51, 400–423 (2022). https://doi.org/10.1007/s10953-022-01150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01150-6

Keywords

Navigation