Skip to main content
Log in

Physicochemical Study of Solvation Behavior of n-Butylammonium Perchlorate in Binary Mixtures of Acetonitrile and Dimethylsulfoxide at Various Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The present study reports a physico-chemical characterization of the solutions of n-butylammonium perchlorate (C4H9NH3ClO4) (BAP) in acetonitrile–dimethylsulfoxide (AN–DMSO) binary mixtures. One objective is to optimize the extraction of components from waste propellants, BAP acting as a model compound. Combining the conductometric and viscometric approaches, quantitative analysis of molecular interactions is reported for solutions of BAP in AN–DMSO binary mixtures containing 0, 20, 40, 60, 80 and 100 mol% DMSO at different temperatures. Analysis of the conductance data to obtain limiting molar conductivities was done using the Onsager equation and the viscosity data were analysed using the Jones–Dole equation. From viscosity data, A and B-coefficients, B/VΦ values and the temperature derivative of B-coefficients, (dB/dT) are calculated. Using the appropriate division of limiting molar conductivity and B-coefficients of tetra-n-butylammonium tetraphenylborate (Bu4NBPh4) as a ‘reference’ electrolyte, the limiting ionic conductivities (\(\lambda_{ \pm }^{{\text{o}}}\)) and B±-coefficients for individual ions have been estimated. The conductivity data is further utilized for obtaining different transport properties such as Walden product, solvated radii (rs), solvation numbers (ns), diffusion coefficients (D±) and ionic mobility (µi) of the ions. The influence of the solvent composition on the solvation of ions was discussed in terms of the composition dependence of solvated radii, Walden product, solvation numbers and viscosity B±-coefficients. In the light of all these parameters, the existence of ion–ion and ion–solvent interations in the investigated system has been identified. Eyring transition state theory has also been used to calculate various activation parameters of viscous flow. Results show preferential solvation of butylammonium (\({\text{C}}_{4} {\text{H}}_{9} {\text{NH}}_{3}^{ + }\)) ions by DMSO in the AN rich region and by AN in the DMSO rich region of the solvent mixtures at all the temperatures studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nandi, D., Hazra, D.K.: Viscosities of alkali-metal chlorides and bromides in 2-methoxyethanol at 25 and 35 °C. J. Chem. Soc. Faraday Trans. 1 85, 4227–4235 (1989)

    Article  CAS  Google Scholar 

  2. Horvath, A.L.: Handbook of Aqueous Electrolyte Solutions. Ellis Harwood, Chichester (1985)

    Google Scholar 

  3. Kaminsky, M.: Ion solvent interactions and viscosity of strong-electrolyte solutions. Discuss. Faraday Soc. 24, 171–179 (1957)

    Article  Google Scholar 

  4. Gill, D.S., Sharma, A.N.: Acetone + N,N-dimethylformamide solvent system. Part 3. Viscosity measurements of some electrolytes in acetone, N,N-dimethyformamide and acetone + N,N-dimethylformamide mixtures at 25 °C. J. Chem. Soc. Faraday Trans. 1 78, 475–484 (1982)

    Article  CAS  Google Scholar 

  5. Gill, D.S., Cheema, J.S.: Preferential solvation of ions in mixed solvents. Z. Phys. Chem. 134, 205–214 (1983)

    Article  CAS  Google Scholar 

  6. Gill, D.S., Chauhan, M.S.: Preferential solvation of ions in mixed solvents. Z. Phys. Chem. 140, 139–148 (1984)

    Article  CAS  Google Scholar 

  7. Gill, D.S., Bakshi, M.S.: Transference number, conductivity and viscosity of some 1:1 electrolytes in pyridine–methanol mixtures at 25 °C. J. Chem. Soc. Faraday Trans. 1 85, 2297–2307 (1989)

    Article  CAS  Google Scholar 

  8. Jauhari, A., Gharde, S., Kandasubramanian, B.: Chapter 8-Effect of Ammonium Perchlorate Particle Size on Flow, Ballistic and Mechanical Properties of Composite Propellant (2019). https://doi.org/10.1016/B978-0-12-813908-0.00008-3

  9. Beachell, H.C .: Combustion Characteristics of Crystalline Rocket Oxidizers. University of Delaware (1972)

  10. Shukla, M.K., Boddu, V.M., Steevens, J.A., Damavarapu, R., Leszczynski, J. (eds.): Energetic Materials. Challenges and Advances in Computational Chemistry and Physics (2017). https://doi.org/10.1007/978-3-319-59208-4

  11. Pitchel, J.: Distribution and fate of military explosives and propellants in soil. Appl. Environ. Soil Sci. (2012). https://doi.org/10.1155/2012/617236

    Article  Google Scholar 

  12. Wilkinson, J., Watt, D.: Review of demilitarisation and disposal techniques for munitions and related materials. Munitions Safety Information Analysis Center (2006)

  13. Pathania, V., Sharma, S., Vermani, S.K., Vermani, B.K.: Ultrasonic velocity and isentropic compressibility studies of monoalkylammonium salts in binary mixtures of acetonitrile and N,N-dimethylacetamide at variable temperature and atmospheric pressure. J. Solution Chem. 49, 798–813 (2020)

    Article  CAS  Google Scholar 

  14. Gill, D.S., Sharma, A.N., Schneider, H.: Acetone + N,N-dimethylformamide solvent system. Part 2.—conductivity studies of some electrolytes in acetone+ N,N-dimethylformamide mixtures at 25 °C. J. Chem. Soc. Faraday Trans. 1 78, 465–474 (1982)

    Article  CAS  Google Scholar 

  15. Anand, H., Verma, R.: Acoustic studies of preferential solvation of tetraalkylammonium salts in dimethylsulfoxide + methanol binary mixtures at 298.15 K. Chem. Sci. Trans. 7(3), 488–498 (2018)

    CAS  Google Scholar 

  16. Roy, M.N., Banerjee, A., Das, R.K.: Conductometric study of some alkali metal halides in (dimethylsulfoxide + acetonitrile) at T = 298 K. J. Chem. Thermodyn. 41, 1187–1192 (2009)

    Article  CAS  Google Scholar 

  17. Riddick, A., Bunger, W.B., Sakano, T.K.: Organic Solvents, Physical Properties and Methods of Purification, 4th edn. Wiley Interscience, New York (1986)

    Google Scholar 

  18. Krumgalz, B.S.: Separation of limiting equivalent conductivity into ionic contributions in non-aqueous solutions by indirect method. J. Chem. Soc. Faraday Trans. 1 79, 571–587 (1983)

    Article  CAS  Google Scholar 

  19. Lind, J.E., Jr., Zwolenik, J.J., Fuoss, R.M.: Calibration of conductivity cells at 25° with aqueous solutions of potassium chloride. J. Am. Chem. Soc. 81, 1557–1559 (1959)

    Article  CAS  Google Scholar 

  20. Pathania, V.: Solvation behavior of some copper 1 perchlorate complexes in binary mixtures of acetonitrile with dimethylsulfoxide. Ph.D. Dissertation, Panjab University (India) (2005)

  21. Pathania, V., Sharma, S., Vermani, S.K., Vermani, B.K.: Study of acoustical parameters of monomethylammonium perchlorates in some non aqueous solvents at different temperatures using ultrasonic technique. Rasayan J. Chem. 13(1), 264–274 (2020)

    Article  Google Scholar 

  22. Pathania, V., Sharma, S., Vermani, S.K., Vermani, B.K., Grover, N.: Estimating the acoustical parameters and molecular interactions of n-butylammonium perchlorate in mixed organic solvents in the temperature range 298–328 K. Phys. Chem. Res. 8, 737–753 (2020)

    CAS  Google Scholar 

  23. Leonardo, G., Gagiliardi, C.B., Castells, C.R., Marti, R., Bosch, E.: Static dielectric constant of acetonitrile/water mixtures at different temperatures and Debye Hückel A and B parameters for activity coefficients. J. Chem. Eng. Data 52, 1103–1107 (2007)

    Article  Google Scholar 

  24. Grigoryan, Z.L., Ghazoyan, H.H., Markarian, A.: Volumetric properties and viscosity of diethylsulfoxide in acetonitrile at different temperatures. Proc. Yerevan State Univ. 51, 147–155 (2017)

    Google Scholar 

  25. Gill, D.S., Singh, B.: Viscosity measurements of some tetrabutylammonium, copper (1) silver (1) and thalium (1) salts in acetonitrile pyridine mixtures at 15, 25 and 35 °C. J. Chem. Soc. Faraday Trans. 1 84, 4417–4426 (1988)

    Article  CAS  Google Scholar 

  26. Kumar, P.T., Prabhu, P.V.S.S., Srivastva, A.K., Kumar, U.B., Ranganathan, R., Gangadharan, R.: Conductivity and viscosity studies of dimethyl sulfoxide (DMSO)-based electrolyte solutions at 25 °C. J. Power Sources 50, 283–294 (1994)

    Article  CAS  Google Scholar 

  27. Chauhan, M.S., Kumar, G., Chauhan, S., Gupta, S.: Conductivity study of electrolyte solutions in binary mixtures of dimethylformamide and dimethylsulfoxide at different temperatures. Indian J. Chem. 43A, 734–738 (2004)

    CAS  Google Scholar 

  28. El-Dossoki, F.I.: Conductometric and thermodynamic studies on the ionic association of HCOONH4, PhCOONH4, HCOONa and PhCOONa in aqueous–organic solvents. J. Mol. Liq. 142, 72–77 (2008)

    Article  CAS  Google Scholar 

  29. Rana, D.S.: “Studies of the solvation behavior of some copper 1 and silver 1 salts in acetonitrile adiponitrile binary mixtures”. Ph.D. Dissertation, Panjab University, India (2009)

  30. Gill, D.S., Kumari, N., Chauhan, M.S.: Preferential solvation of ions in mixed solvents. Part-4.—preferential solvation of Cu+ in acetone + acetonitrile and N,N-dimethylacetamide + acetonitrile mixtures using conductivity measurements. J. Chem. Soc. Faraday Trans. 1 81(3), 687–693 (1985)

    Article  CAS  Google Scholar 

  31. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. The Measurement and Interpretation of Conductivity, Chemical Potential and Diffusion in Solutions of Simple Electrolytes. Butterworths, London (1961)

    Google Scholar 

  32. Gupta S.: Conductivity and ultrasonic velocity studies of electrolytes in N,N-dimethylformamide–dimethylsulfoxide solvent system at different temperatures. Ph.D. Dissertation, Himachal Pradesh University, India (1996)

  33. Gill, D.S., Sharma, A., Chauhan, M.S., Sharma, A.N., Cheema, J.S.: Preferential solvation of ions in mixed solvents—III. Conductivity studies of some 1:1 electrolytes in N,N-dimethylformamide + methanol mixtures at 25 °C. Electrochim. Acta 30, 151–153 (1985)

    Article  CAS  Google Scholar 

  34. D’Aprano, A., Fuoss, R.M.: Conductivity in isodielectric mixtures. I. n-Butyronitrile with dioxane, benzene, and carbon tetrachloride. J. Solution Chem. 3, 45–55 (1974)

    Article  Google Scholar 

  35. Cohen, B.N., Cesar, L., Norman, D.: Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and alkali metal cations. J. Gen. Physiol. 100, 373–400 (1992)

    Article  CAS  Google Scholar 

  36. Ramadan, S.H., Mallah, N.M.: Electrical conductivity of some cobalt(III) complex salts in aqueous medium at 298 K. Der Chem. Sin. 4(3), 100–107 (2013)

    Google Scholar 

  37. Zhang, S., Sun, N., He, X., Lu, X., Zang, X.: Physical properties of ionic liquids: database and evaluation. J. Phys. Chem. Ref. Data 35, 1475–1517 (2006)

    Article  CAS  Google Scholar 

  38. Eka, D., Roy, M.N.: Quantitative and qualitative analysis of ionic solvation of individual ions of imidazolium based ionic liquids in significant solution systems by conductivity and FT-IR spectroscopy. RSC Adv. 4, 19831–19845 (2014)

    Article  Google Scholar 

  39. Harris, K.R.: Comment on: ionic conductivity, diffusion coefficients and degree of dissociation in lithium electrolytes, ionic liquids and hydrogel polyelectrolytes. J. Phys. Chem. 122, 10964–10967 (2018)

    Article  CAS  Google Scholar 

  40. Banait, J.S., Sidhu, K.S., Walia, J.S.: Transference numbers and solvation studies in n-butanol. Can. J. Chem. 62, 303–305 (1985)

    Article  Google Scholar 

  41. Eyring, H., John, M.S.: Significant Liquid Structure. Wiley, New York (1969)

    Google Scholar 

  42. Nain, A.K., Hyder, S.: Intermolecular interactions in ternary liquid mixtures by ultrasonic velocity measurements. J. Indian Chem. Soc. 74B, 63–67 (2000)

    Google Scholar 

  43. Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)

    Article  CAS  Google Scholar 

  44. Zamir, T., Khan, A., Durrani, S., Uddin, F.: Study of ion solvent interactions and activation energy of LiBr in DMSO, H2O and DMSO–H2O mixtures at various temperatures. Ionics 13, 245–255 (2007)

    Article  CAS  Google Scholar 

  45. Masood, S., Saeed, R., Ashfaq, M., Irfan, A.: Ion–solvent and and ion–ion interactions of NaCl aqueous and aqueous maltose solutions at 298–323 K on viscosity data. Russ J. Phys. Chem. A 88, 2102–2107 (2014)

    Article  CAS  Google Scholar 

  46. Sarkar, A., Rahaman, H., Singha, U.K., Sinha, B.: Solute–solute and solute–solvent Interactions of paracetamol in aqueous solutions of β-cyclodextrin at different temperatures: a volumetric and viscometric approach. Indian J. Adv. Chem. Sci. 5, 230–244 (2017)

    CAS  Google Scholar 

  47. Gill, D.S., Kumari, A., Gupta, R., Rana, D., Puri, J.K., Jauhar, S.P.: Preferential solvation of some copper(I), silver(I) and sodium(I) salts in acetonitrile + n-butyronitrile and acetonitrile + N,N-dimethylacetamide mixtures: preferential solvation of some copper (1), silver (1) salts. J. Mol. Liq. 133, 7–10 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrutila Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathania, V., Sharma, S., Vermani, S.K. et al. Physicochemical Study of Solvation Behavior of n-Butylammonium Perchlorate in Binary Mixtures of Acetonitrile and Dimethylsulfoxide at Various Temperatures. J Solution Chem 50, 1204–1235 (2021). https://doi.org/10.1007/s10953-021-01113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01113-3

Keywords

Navigation