Skip to main content
Log in

Concentration Dependence of the Viscosity Activation Energy of Aqueous Ethylene Glycol Mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Mixtures of ethylene glycol with water are a prominent example of media with variable viscosity, and ethylene glycol molecules serve as a prototype of various polyols having multiple hydroxyl groups. The dynamic viscosity of ethylene glycol–water mixtures was measured by vibro-viscosimetry over entire range of mole fraction under atmospheric pressure and from 10 to 30 °C; the variation of the viscosity activation energy with ethylene glycol mole fraction was determined and is discussed. In the present work we propose a novel equation for modeling the concentration dependences of the activation energy and viscosity. The theory is based on the assumption that the nonlinear characteristics can be associated with some structural changes of the mixtures, and that the reaction kinetics can be applied to this breakdown. The Grunberg–Nissan parameter and viscosity deviations were calculated. The possible changes in the variety of complexes for different concentration ranges is discussed. Correlation between the activation energy and pre-exponential factor was made. Three concentration regions are determined, separated by ethylene glycol molar fractions x = 0.11 and 0.43, where the structure of the water/ethylene glycol complexes changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saiz, L., Padro, J.A., Guardia, E.: Structure of liquid ethylene glycol: a molecular dynamics simulation study with different force fields. J. Chem. Phys. 114, 3187–3189 (2001)

    Article  CAS  Google Scholar 

  2. Eliasson, R., Hammarsten, E., Lindahl, T.: Use of ethylene glycol in counter flow electrophoresis and in cold concentration of DNA and protein solutions. Biotechnol. Bioeng. 4, 53–56 (1962)

    Article  CAS  Google Scholar 

  3. Lindahl, T.: The world of DNA in glycol solution. Nat. Rev. Mol. Cell Biol. 17, 335–336 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. Hizaddin, H.F., Sarwono, M., Hashim, M.A., Alnashef, I.M., Hadj-Kali, M.K.: Coupling the capabilities oxide of different complexing agents into deep eutectic solvents to enhance the separation of aromatics from aliphatics. J. Chem. Thermodyn. 84, 67–75 (2015)

    Article  CAS  Google Scholar 

  5. Kaur, S., Shobhna, Kashyap, H.K.: Insights gained from refined force-field for pure and aqueous ethylene glycol through molecular dynamics simulations. J. Phys. Chem. B 123, 6543–6553 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. Schmitz, R., Muller, N., Ullmann, S., Vogel, M.A.: A molecular dynamics simulations study on ethylene glycol–water mixtures in mesoporous silica. J. Chem. Phys. 145, (2016)

    Article  PubMed  Google Scholar 

  7. Kumbharkhane, A.C., Puranik, S.M., Mehrotra, S.C.: Temperature dependent dielectric relaxation study of ethylene glycol–water mixtures. J. Solution Chem. 21, 201–212 (1992)

    Article  CAS  Google Scholar 

  8. Oldenhof, H., Friedel, K., Sieme, H., Glasmacher, B., Wolkers, W.F.: Membrane permeability parameters for freezing of stallion sperm as determined by Fourier transform infrared spectroscopy. Cryobiology 61, 115–122 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. Murli, C., Lu, N., Dong, Z., Song, Y.: Hydrogen bonds and conformations in ethylene glycol under pressure. Phys. Chem. B 116, 12574–12580 (2012)

    Article  CAS  Google Scholar 

  10. Amo, Y., Inadachi, Y., Tominaga, Y.: Low-frequency Raman study of water–ethylene glycol oligomer binary mixtures. J. Chem. Phys. 119, 10801 (2003)

    Article  CAS  Google Scholar 

  11. Fortes, A.D., Suard, E.: Crystal structures of ethylene glycol and ethylene glycol monohydrate. J. Chem. Phys. 135, (2011)

    Article  PubMed  Google Scholar 

  12. Petterson, K.A., Stein, R.S., Drake, M.D., Roberts, J.D.: An NMR investigation of the importance of intramolecular hydrogen bonding in determining the conformational equilibrium of ethylene glycol in solution. Magn. Reson. Chem. 43, 225–230 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, Y.-H., Li, S.-N., Zhai, Q.-G., Jiang, Y.-C., Hu, M.-C.: Compositions, densities, and refractive indices for the ternary systems ethylene glycol + NaCl + H2O, ethylene glycol + KCl + H2O, ethylene glycol + RbCl + H2O, and ethylene glycol + CsCl + H2O at 298.15 K. J. Chem. Eng. Data 55, 1289–1294 (2010)

    Article  CAS  Google Scholar 

  14. Zhou, Y.-H., Li, S.-N., Zhai, Q.-G., Jiang, Y.-C., Hu, M.-C.: Solubilities, densities, and refractive indices for the ternary systems ethylene glycol + MCl + H2O (M = Na, K, Rb, Cs) at 15 and 35 & #xB0;C. J. Chem. Thermodyn. 42, 764–772 (2010)

    Article  CAS  Google Scholar 

  15. Masoudi, R., Tohidi, B., Danesh, A., Todd, A.C., Anderson, R., Burgass, R.W., Yang, J.: Measurement and prediction of gas hydrate and hydrated salt equilibria in aqueous ethylene glycol and electrolyte solutions. Chem. Eng. Sci. 60, 4213–4224 (2005)

    Article  CAS  Google Scholar 

  16. Kan, A.T., Fu, G., Tomson, M.B.: Effect of methanol and ethylene glycol on sulfates and halite scale formation. Ind. Eng. Chem. Res. 42, 2399–2408 (2003)

    Article  CAS  Google Scholar 

  17. Patil, P.D., Shaikh, V.R., Gupta, G.R., Hundiwale, D.G., Borse, A.U., Patil, K.J.: Studies of viscosity coefficient and expansivity properties of aqueous solutions of ethylene glycol and polyethylene glycols at 293.15, 298.15 and 303.15 K and at ambient pressure. J. Solution Chem. 45, 947–969 (2016)

    Article  CAS  Google Scholar 

  18. Masoudi, R., Tohidi, B., Anderson, R., Burgass, R.W., Yang, J.: Experimental measurement and thermodynamic modelling of clathrate hydrate equilibria and salt solubility in aqueous ethylene glycol and electrolyte solutions. Fluid Phase Equilib. 219, 157–163 (2004)

    Article  CAS  Google Scholar 

  19. Sandengen, K., Kaasa, B., Ostvold, T.: pH measurements in monoethylene glycol (MEG) + water solutions. Ind. Eng. Chem. Res. 46, 4734–4739 (2007)

    Article  CAS  Google Scholar 

  20. Koga, Y.: Effect of ethylene glycol on the molecular organization of H2O in comparison with methanol and glycerol: a calorimetric study. J. Solution Chem. 32, 803–818 (2003)

    Article  CAS  Google Scholar 

  21. Nan, Z., Liu, B., Tan, Z.: Calorimetric Investigation of excess molar heat capacities for water + ethylene glycol from T = 273.15 to T = 373.15 K. J. Chem. Thermodyn. 34, 915–926 (2002)

    Article  CAS  Google Scholar 

  22. Egorov, G.I., Makarov, D.M., Kolker, A.M.: Volumetric properties of the water–ethylene glycol mixtures in the temperature range 278–333.15 K at atmospheric pressure. Russ. J. Gen. Chem. 80, 1577–1585 (2010)

    Article  CAS  Google Scholar 

  23. Kalies, G., Brauer, P., Schmidt, A., Messow, U.: Calculation and prediction of adsorption excesses on the ternary liquid mixture/air interface from surface tension measurements. J. Colloid Interface Sci. 247, 1–11 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. Sun, T., Teja, A.S.: Density, viscosity, and thermal conductivity of aqueous ethylene, diethylene, and triethylene glycol mixtures between 290 and 450 K. J. Chem. Eng. Data 48, 198–202 (2003)

    Article  CAS  Google Scholar 

  25. Bohne, B., Fischer, S., Obermeier, E.: Thermal conductivity, density, viscosity, and Prandtl-numbers of ethylene glycol–water mixtures. Ber. Bunsenges. Phys. Chem. 88, 739–742 (1984)

    Article  CAS  Google Scholar 

  26. Tsierkezos, N.G., Molinou, I.E.: Transport properties of 2:2 symmetrical electrolytes in (water + ethylene glycol) binary mixtures at T = 293.15 K. J. Chem. Thermodyn. 38, 1422–1431 (2006)

    Article  CAS  Google Scholar 

  27. Wang, P., Kosinski, J.J., Anderko, A., Springer, R.D., Lencka, M.M., Liu, J.: Ethylene glycol and its mixtures with water and electrolytes: thermodynamic and transport properties. Ind. Eng. Chem. Res. 52, 15968–15987 (2013)

    Article  CAS  Google Scholar 

  28. Davletbaeva, I.M., Emelina, O.Y., Vorotyntsev, I.V., Davletbaev, R.S., Grebennikova, E.S., Petukhov, A.N., Akhmetshina, A.I., Sazanova, T.S., Loskutov, V.V.: Synthesis and properties of novel polyurethanes based on amino ethers of boric acid for gas separation membranes. RSC Adv. 5, 65674–65683 (2015)

    Article  CAS  Google Scholar 

  29. Grunberg, L., Nissan, A.H.: Mixture law for viscosity. Nature 164, 799–800 (1949)

    Article  CAS  PubMed  Google Scholar 

  30. Glasstone, S., Laidler, K.J., Eyring, H.: The theory of rate processes. McGraw Hill, New York (1941)

    Google Scholar 

  31. Marczak, W., Adamczyk, N., Lezniak, M.: Viscosity of associated mixtures approximated by the Grunberg-Nissan model. Int. J. Thermophys. 33, 680–691 (2012)

    Article  CAS  Google Scholar 

  32. Roegiers, M.: Discussion of the fundamental equation of viscosity. Ind. Lubrication Tribology 3, 27–29 (1951)

    Article  Google Scholar 

  33. Loskutov, V.V., Kosova, G.N.: Molecular structure of an ethylene glycol–water solution at 298 K. Russ. J. Phys. Chem. A 93, 260–264 (2019)

    Article  CAS  Google Scholar 

  34. Reid, R.C., Prausnitz, J.M., Poling, B.E.: The properties of gases and liquids. McGraw-Hill, New York (1987)

    Google Scholar 

  35. Isdale, J.D.: Symposium transport properties of fluids and fluid mixtures. Natl. Eng. Lab, East Kilbride, Glasgow, Scotland (1979)

    Google Scholar 

  36. Isdale, J.D., MacGillivray, J.C., Cartwright, G.: Prediction of viscosity of organic liquid mixtures by a group contribution method. Natl. Eng. Lab. Rept., East Kilbride, Glasgow, Scotland (1985)

    Google Scholar 

  37. Loskutov, V.V.: Viscosity of mono-, di- and triethylene glycol aqueous solutions at 298.15 K. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 62, 41–46 (2019)

    Article  CAS  Google Scholar 

  38. Guettari, M., Gharbi, A.: A correspondence between Grunberg-Nissan constant d′ and complex varieties in water/methanol mixture. Phys. Chem. Liq. 49, 459–469 (2011)

    Article  CAS  Google Scholar 

  39. Ali, A., Nain, A.A.K., Hyder, S.: Molecular interactions in formamide + isomeric butanols: an ultrasonic and volumetric study. J. Solution Chem. 32, 865–877 (2003)

    Article  CAS  Google Scholar 

  40. Kaiser, A., Ritter, M., Nazmutdinov, R., Probst, M.: Hydrogen bonding and dielectric spectra of ethylene glycol−water mixtures from molecular dynamics simulations. J. Phys. Chem. B 120, 10515–10523 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kumar, R.M., Baskar, P., Balamurugan, K., Sumitesh, S., Subramanian, V.: On the perturbation of the H-bonding interaction in ethylene glycol clusters upon hydration. J. Phys. Chem. A 116, 4239–4247 (2012)

    Article  CAS  PubMed  Google Scholar 

  42. Rodnikova, M.N., Chumaevskii, N.A., Troitskii, V.M., Kayumova, D.V.: Structure of liquid ethylene glycol. Russ. J. Phys. Chem. 80, 826–830 (2006)

    Article  CAS  Google Scholar 

  43. Haj-Kacem, R.B., Ouerfelli, N., Herraez, J.V., Guettari, M., Hamda, H., Dallel, M.: Contribution to modeling the viscosity Arrhenius-type equation for some solvents by statistical correlations analysis. Fluid Phase Equilib. 383, 11–20 (2014)

    Article  CAS  Google Scholar 

  44. Haj-Kacem, R.B., Ouerfelli, N., Herraez, J.V.: Viscosity Arrhenius parameters correlation: extension from pure to binary fluid mixtures. Phys. Chem. Liq. 53, 776–784 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin V. Loskutov.

Ethics declarations

Conflict of interest

We have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loskutov, V.V. Concentration Dependence of the Viscosity Activation Energy of Aqueous Ethylene Glycol Mixtures. J Solution Chem 50, 427–442 (2021). https://doi.org/10.1007/s10953-021-01069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01069-4

Keywords

Navigation