Skip to main content
Log in

Critical Scattering in Room-Temperature Ionic Liquid–Propanol Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Critical scattering, derived from the phase separation of room-temperature ionic liquid (RTIL)–propanol solutions, was observed by small- and wide-angle X-ray scattering (SWAXS). The RTILs were 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [Cnmim][TFSI] (n = 2–8). Critical scattering of the [C2mim][TFSI]–propanol system was enhanced in a propanol-rich region and corresponded to liquid–liquid equilibria in the mixture. The propanol isomer effect was obtained from a correlation length that represents fluctuations in density. By SWAXS, RTIL–propanol solutions had a prepeak that indicates nanoheterogeneity, and two kinds of fluctuation coexisted in the RTIL–propanol system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Seddon, K.R.: Ionic liquids a taste of the future. Nature Mater. 2, 363–365 (2003)

    Article  CAS  Google Scholar 

  2. Rogers, R.D., Seddon, K.R.: Ionic liquids–solvents of the future? Science 302, 792–973 (2003)

    Article  PubMed  Google Scholar 

  3. Lei, Z., Chen, B., Koo, Y.-M., MacFarlane, D.R.: Introduction: ionic liquids. Chem. Rev. 117, 6633–6635 (2017)

    Article  PubMed  Google Scholar 

  4. Armand, M., Endres, F., MacFarlane, D., Ohno, H., Scrosati, B.: Ionic–liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L., Luo, G.: Electrolytes in dye-sensitized solar cells. Chem. Rev. 115, 2136–2173 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. Watanabe, M., Thomas, M.L., Zhang, S., Ueno, K., Yasuda, T., Dokko, K.: Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 117, 7190–7239 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. Blanchard, L.A., Hancu, D., Beckman, E.J., Brennecke, J.F.: Green processing using ionic liquids and CO2. Nature 399, 28–29 (1999)

    Article  Google Scholar 

  8. Rosen, B.A., Salehi-Khojin, A., Thorson, M.R., Zhu, W., Whipple, D.T., Kenis, P.J.A., Masel, R.I.: Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. Brennecke, J.F., Gurkan, B.E.: Ionic liquids for CO2 capture and emission reduction. J. Phys. Chem. Lett. 1, 3459–3464 (2010)

    Article  CAS  Google Scholar 

  10. Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D.: Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Pinkert, A., Marsh, K.N., Pang, S., Staiger, M.P.: Ionic liquids and their interaction with cellulose. Chem. Rev. 109, 6712–6728 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, Y., Qu, J.: Ionic liquids as lubricant additives: a review. ACS Appl. Mater. Interfaces 9, 3209–3222 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999)

    Article  CAS  PubMed  Google Scholar 

  14. Leitner, W.: A greener solution. Nature 423, 930–931 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. Qiao, Y., Ma, W., Theyssen, N., Chen, C., Hou, Z.: Temperature-responsive ionic liquids: fundamental behaviors and catalytic applications. Chem. Rev. 117, 6881–6928 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. Canongia Lopes, J.N.A., Padua, A.A.H.: Nanostructural organization in ionic liquids. J. Phys. Chem. B 110, 3330–3335 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. Shimizu, K., Bernardes, C.E.S., CanongiaLopes, J.N.: Structure and aggregation in the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid homologous series. J. Phys. Chem. B 118, 567–576 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. Triolo, A., Russina, O., Bleif, H.-J., Di Cola, E.: Nanoscale segregation in room temperature ionic liquids. J. Phys. Chem. B 111, 4641–4644 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. Russina, O., Triolo, A., Gontrani, L., Caminiti, R., Xiao, D., Hines, L.G., Bartsch, R.A., Quitevis, E.L., Plechkova, N., Seddon, K.R.: Morphology and intermolecular dynamics of 1-alkyl-3-methylimidazolium bis{(trifluoromethane)sulfonyl}amide ionic liquids: structural and dynamic evidence of nanoscale segregation. J. Phys. Condens. Matter. 21, 424121 (2009)

    Article  Google Scholar 

  20. Hayes, R., Warr, G.G., Atkin, R.: Structure and nanostructure in ionic liquids. Chem. Rev. 115, 6357–6426 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. Dong, K., Liu, X., Dong, H., Zhang, X., Zhang, S.: Multiscale studies on ionic liquids. Chem. Rev. 117, 6636–6695 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, S., Zhang, J., Zhang, Y., Deng, Y.: Nanoconfined ionic liquids. Chem. Rev. 117, 6755–6833 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. MacFarlane, D.R., Chong, A.L., Forsyth, M., Kar, M., Vijayaraghavan, R., Somers, A., Pringle, J.M.: New dimensions in salt–solvent mixtures: a 4th evolution of ionic liquids. Faraday Discuss. 206, 9–28 (2018)

    Article  CAS  Google Scholar 

  24. Méndez-Morales, T., Carrete, J., Cabeza, O., Gallego, L.J., Varela, L.M.: Molecular dynamics simulations of the structural and thermodynamic properties of imidazolium-based ionic liquid mixtures. J. Phys. Chem. B 115, 11170–11182 (2011)

    Article  PubMed  Google Scholar 

  25. Russina, O., Sferrazza, A., Caminiti, R., Triolo, A.: Amphiphile meets amphiphile: beyond the polar–apolar dualism in ionic liquid/alcohol mixtures. J. Phys. Chem. Lett. 5, 1738–1742 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. Murphy, T., Hayes, R., Imberti, S., Warr, G.G., Atkin, R.: Ionic liquid nanostructure enables alcohol self assembly. Phys. Chem. Chem. Phys. 18, 12797–12809 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. Montes-Campos, H., Otero-Mato, J.M., Méndez-Morales, T., López-Lago, E., Russina, O., Cabeza, O., Gallego, L.J., Varela, L.M.: J. Chem. Phys. 146, 124503–124509 (2017)

    Article  PubMed  Google Scholar 

  28. Agrawal, S., Kashyap, H.K.: Structures of binary mixtures of ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with primary alcohols: the role of hydrogen-bonding. J. Mol. Liq. 261, 337–349 (2018)

    Article  CAS  Google Scholar 

  29. Ozawa, S., Kishimura, H., Kitahira, S., Tamatani, K., Hirayama, K., Abe, H., Yoshimura, Y.: Isomer effect of propanol on liquid–liquid equilibrium in hydrophobic room-temperature ionic liquids. Chem. Phys. Lett. 613, 122–126 (2014)

    Article  CAS  Google Scholar 

  30. Abe, H., Fukushima, R., Onji, M., Hirayama, K., Kishimura, H., Yoshimura, Y., Ozawa, S.: Two-length scale description of hydrophobic room-temperature ionic liquid–alcohol systems. J. Mol. Liq. 215, 417–422 (2016)

    Article  CAS  Google Scholar 

  31. Abe, H., Kohki, E., Nakada, A., Kishimura, H.: Phase behavior in quaternary ammonium ionic liquid–propanol solutions: hydrophobicity, molecular conformations, and isomer effects. Chem. Phys. 491, 136–142 (2017)

    Article  CAS  Google Scholar 

  32. Kishimura, H., Kohki, E., Nakada, A., Tamatani, K., Abe, H.: Ether bond effects in quaternary ammonium and phosphonium ionic liquid–propanol solutions. Chem. Phys. 502, 87–95 (2018)

    Article  CAS  Google Scholar 

  33. Rebelo, L.P.N., Najdanovic-Visak, V., Visak, Z.P., Nunes da Ponte, M., Szydlowski, J., Cerdeiriña, C.A., Troncoso, J., Romaní, L., Esperança, J.M.S.S., Guedes, H.J.R., de Sousa, H.C.: A detailed thermodynamic analysis of [C4mim][BF4] + water as a case study to model ionic liquid aqueous solutions. Green Chem. 6, 369–381 (2004)

    Article  CAS  Google Scholar 

  34. Almasy, L., Turmine, M., Perera, A.: Structure of aqueous solutions of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate by small-angle neutron scattering. J. Phys. Chem. B 112, 2382–2387 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. Gao, J., Wagner, N.J.: Water nanocluster formation in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4])–D2O mixtures. Langmuir 32, 5078–5084 (2016)

    Article  CAS  PubMed  Google Scholar 

  36. Granovsky, A A.: Firefly version 8, http://classic.chem.msu.su/gran/firefly/index.html

  37. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., Montgomery, J.A., Jr.: General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993)

    Article  CAS  Google Scholar 

  38. Mikusinska-Planner, A.: X-ray diffraction study of the structure of 1-propanol at −25 °C. Acta Cryst. A 33, 433–437 (1977)

    Article  Google Scholar 

  39. Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, Oxford (1971)

    Google Scholar 

  40. Hayashi, H., Morita, T., Nishikawa, K.: Interpretation of correlation length by small-angle X-ray scattering experiments on fluids near critical point. Chem. Phys. Lett. 471, 249–252 (2009)

    Article  CAS  Google Scholar 

  41. Kaneko, K., Mori, T., Hattori, S., Takekiyo, T., Masuda, Y., Yoshimura, Y., Shimizu, A.: Dynamic and static properties of mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate and alcohols with various alkyl chain lengths. J. Mol. Liq. 295, 111718–111727 (2019)

    Article  CAS  Google Scholar 

  42. Fujii, K., Fujimori, T., Takamuku, T., Kanzaki, R., Umebayashi, Y., Ishiguro, S.: Conformational equilibrium of bis(trifluoromethanesulfonyl) imide anion of a room-temperature ionic liquid: Raman spectroscopic study and DFT calculations. J. Phys. Chem. B 110, 8179–8183 (2006)

    Article  CAS  PubMed  Google Scholar 

  43. Yoshimura, Y., Takekiyo, T., Imai, Y., Abe, H.: Pressure-induced spectral changes of room-temperature ionic liquid, N, N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)imide, [DEME][TFSI]. J. Phys. Chem. C 116, 2097–2101 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. T. Takekiyo and Prof. Y. Yoshimura of the National Defense Academy for helpful discussion. Also, we appreciate Prof. N. Hamaya of Ochanomizu University for experimental supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Abe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10953_2021_1051_MOESM1_ESM.docx

Fig. S1 Raw SWAXS data of [C2mim][TFSI] -92 mol% 1-propanol with a Kapton windows and b glass capillary. c Raw SWAXS data of pure 1-propanol with Kapton windows. Backgrounds without samples are expressed by solid curves. Electronic supplementary material 1 (DOCX 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, H., Nemoto, F. & Ozawa, S. Critical Scattering in Room-Temperature Ionic Liquid–Propanol Solutions. J Solution Chem 50, 220–231 (2021). https://doi.org/10.1007/s10953-021-01051-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01051-0

Keywords

Navigation