Skip to main content

Advertisement

Log in

Change of C(2)-Hydrogen–Deuterium Exchange in Mixtures of EMIMAc

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

1-Ethyl-3-methylimidazolium acetate (EMIMAc) is an ionic liquid (IL) often investigated as a solvent, especially in the context of biopolymers and biomass pretreatment. A reduced solvent efficacy occurs upon the addition even of low amounts of water to EMIMAc. Molecular mechanisms have not yet been fully understood. It is expected that the functionality as hydrogen bond donor and acceptor is key for the solvent–solute interactions. In this work, we analyze the solvent efficacy of EMIMAc in terms of hydrogen–deuterium (H/D) exchange at the C(2)-position in mixtures with water or acetic acid added as proton donors. Low-field NMR spectroscopy and deuterated solvents are used for a time-resolved evaluation of H/D exchange reactions. The H/D exchange is also modeled to explore changes in the reaction kinetics as a function of the mixture composition. The significant difference in calculated rate constant values among the concentration regimes shows that the chosen model equations of a possible pseudo-first-order and second-order reaction mechanism including water dissociation do not cover all interaction phenomena that influence the exchange in the individual concentration ranges. However, the modeling also indicates that the investigated interaction of \(\hbox {EMIM}^+\) and \(\hbox {Ac}^-\) remains constant for concentrated IL mixtures containing \(70\, {\text{mol}}\%\) of EMIMAc in water up to diluted mixtures as low as \(30\, {\text{mol}}\%\) EMIMAc. This exemplifies the change between ions strongly associated in networks in concentrated mixtures suitable for biomass pretreatment and the much less associated anion–cation pairs in diluted mixtures which leads to the decreased efficiency of EMIMAc with increasing water content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Viell, J., Wulfhorst, H., Schmidt, T., Commandeur, U., Fischer, R., Spiess, A., Marquardt, W.: An efficient process for the saccharification of wood chips by combined ionic liquid pretreatment and enzymatic hydrolysis. Bioresour. Technol. 146, 144–151 (2013). https://doi.org/10.1016/j.biortech.2013.07.059

    Article  CAS  PubMed  Google Scholar 

  2. Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D.: Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124(18), 4974–4975 (2002). https://doi.org/10.1021/ja025790m

    Article  CAS  Google Scholar 

  3. Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodríguez, H., Rogers, R.D.: Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 11(5), 646–655 (2009). https://doi.org/10.1039/b822702k

    Article  CAS  Google Scholar 

  4. Kilpeläinen, I., Xie, H., King, A., Granstrom, M., Heikkinen, S., Argyropoulos, D.S.: Dissolution of wood in ionic liquids. J. Agric. Food Chem. 55(22), 9142–9148 (2007). https://doi.org/10.1021/jf071692e

    Article  CAS  PubMed  Google Scholar 

  5. Viell, J., Inouye, H., Szekely, N.K., Frielinghaus, H., Marks, C., Wang, Y., Anders, N., Spiess, A.C., Makowski, L.: Multi-scale processes of beech wood disintegration and pretreatment with 1-ethyl-3-methylimidazolium acetate/water mixtures. Biotechnol. Biofuels 9, 7 (2016). https://doi.org/10.1186/s13068-015-0422-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lovell, C.S., Walker, A., Damion, R.A., Radhi, A., Tanner, S.F., Budtova, T., Ries, M.E.: Influence of cellulose on ion diffusivity in 1-ethyl-3-methyl-imidazolium acetate cellulose solutions. Biomacromolecules 11(11), 2927–2935 (2010). https://doi.org/10.1021/bm1006807

    Article  CAS  PubMed  Google Scholar 

  7. Le, K.A., Rudaz, C., Budtova, T.: Phase diagram, solubility limit and hydrodynamic properties of cellulose in binary solvents with ionic liquid. Carbohydr. Polym. 105, 237–243 (2014). https://doi.org/10.1016/j.carbpol.2014.01.085

    Article  CAS  PubMed  Google Scholar 

  8. Rabideau, B.D., Agarwal, A., Ismail, A.E.: The role of the cation in the solvation of cellulose by imidazolium-based ionic liquids. J. Phys. Chem. B 118(6), 1621–1629 (2014). https://doi.org/10.1021/jp4115755

    Article  CAS  PubMed  Google Scholar 

  9. Lu, B., Xu, A., Wang, J.: Cation does matter: how cationic structure affects the dissolution of cellulose in ionic liquids. Green Chem. 16(3), 1326–1335 (2014). https://doi.org/10.1039/c3gc41733f

    Article  CAS  Google Scholar 

  10. Xu, A., Wang, J., Wang, H.: Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem. 12(2), 268–275 (2010). https://doi.org/10.1039/b916882f

    Article  CAS  Google Scholar 

  11. Brandt, A., Hallett, J.P., Leak, D.J., Murphy, R.J., Welton, T.: The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chem. 12(4), 672–679 (2010). https://doi.org/10.1039/b918787a

    Article  CAS  Google Scholar 

  12. Ebner, G., Schiehser, S., Potthast, A., Rosenau, T.: Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett. 49(51), 7322–7324 (2008). https://doi.org/10.1016/j.tetlet.2008.10.052

    Article  CAS  Google Scholar 

  13. Clough, M.T., Geyer, K., Hunt, P.A., Son, S., Vagt, U., Welton, T.: Ionic liquids-not always innocent solvents for cellulose. Green Chem. 17(1), 231–243 (2015). https://doi.org/10.1039/c4gc01955e

    Article  CAS  Google Scholar 

  14. Xu, A., Zhang, Y., Zhao, Y., Wang, J.: Cellulose dissolution at ambient temperature: role of preferential solvation of cations of ionic liquids by a cosolvent. Carbohydr. Polym. 92(1), 540–544 (2013). https://doi.org/10.1016/j.carbpol.2012.09.028

    Article  CAS  PubMed  Google Scholar 

  15. Brehm, M., Weber, H., Pensado, A.S., Stark, A., Kirchner, B.: Proton transfer and polarity changes in ionic liquid–water mixtures: a perspective on hydrogen bonds from ab initio molecular dynamics at the example of 1-ethyl-3-methylimidazolium acetate–water mixtures-part 1. Phys. Chem. Chem. Phys. 14(15), 5030–5044 (2012). https://doi.org/10.1039/c2cp23983c

    Article  CAS  PubMed  Google Scholar 

  16. Hollóczki, O., Gerhard, D., Massone, K., Szarvas, L., Németh, B., Veszprémi, T., Nyulászi, L.: Carbenes in ionic liquids. New J. Chem. 34(12), 3004–3009 (2010). https://doi.org/10.1039/c0nj00380h

    Article  CAS  Google Scholar 

  17. MacFarlane, D.R., Pringle, J.M., Johansson, K.M., Forsyth, S.A., Forsyth, M.: Lewis base ionic liquids. Chem. Commun. 18, 1905–1917 (2006). https://doi.org/10.1039/b516961p

    Article  CAS  Google Scholar 

  18. Vilarino, T., de Vicente, M.E.S.: Theoretical calculations of the ionic strength dependence of the ionic product of water based on a mean spherical approximation. J. Solution Chem. 26(9), 833–846 (1997). https://doi.org/10.1007/BF02768261

    Article  CAS  Google Scholar 

  19. McCune, J.A., He, P., Petkovic, M., Coleman, F., Estager, J., Holbrey, J.D., Seddon, K.R., Swadźba-Kwaśny, M.: Brønsted acids in ionic liquids: how acidity depends on the liquid structure. Phys. Chem. Chem. Phys. 16(42), 23233–23243 (2014). https://doi.org/10.1039/c4cp03217a

    Article  CAS  PubMed  Google Scholar 

  20. MacFarlane, D.R., Chong, A.L., Forsyth, M., Kar, M., Vijayaraghavan, R., Somers, A., Pringle, J.M.: New dimensions in salt–solvent mixtures: a 4th evolution of ionic liquids. Faraday Discuss. 206, 9–28 (2018). https://doi.org/10.1039/c7fd00189d

    Article  CAS  Google Scholar 

  21. Baek, C.S., Lee, Y.J., Lee, S.J., Kim, H.C., Jeong, S.W.: C2-Functionalized 1,3-dialkylimidazolium ionic liquids for efficient cellulose dissolution. J. Mol. Liq. 234, 111–116 (2017). https://doi.org/10.1016/j.molliq.2017.03.086

    Article  CAS  Google Scholar 

  22. Yoshimura, Y., Hatano, N., Takekiyo, T., Abe, H.: Direct correlation between the H/D exchange reaction and conformational changes of the cation in imidazolium-based ionic liquid-D\(_2\)O mixtures. J. Solution Chem. 43(9–10), 1509–1518 (2014). https://doi.org/10.1007/s10953-014-0181-4

    Article  CAS  Google Scholar 

  23. Cha, S., Ao, M., Sung, W., Moon, B., Ahlström, B., Johansson, P., Ouchi, Y., Kim, D.: Structures of ionic liquid–water mixtures investigated by IR and NMR spectroscopy. Phys. Chem. Chem. Phys. 16(20), 9591–9601 (2014). https://doi.org/10.1039/c4cp00589a

    Article  CAS  PubMed  Google Scholar 

  24. Yasaka, Y., Wakai, C., Matubayasi, N., Nakahara, M.: Slowdown of H/D exchange reaction rate and water dynamics in ionic liquids: deactivation of solitary water solvated by small anions in 1-butyl-3-methyl-imidazolium chloride. J. Phys. Chem. A 111(4), 541–543 (2007). https://doi.org/10.1021/jp0673720

    Article  CAS  PubMed  Google Scholar 

  25. Rico Del Cerro, D., Mera-Adasme, R., King, A.W.T., Perea-Buceta, J.E., Heikkinen, S., Hase, T., Sundholm, D., Wähälä, K.: On the mechanism of the reactivity of 1,3-dialkylimidazolium salts under basic to acidic conditions: a combined kinetic and computational study. Angew. Chem. Int. Ed. 57(36), 11613–11617 (2018). https://doi.org/10.1002/anie.201805016

    Article  CAS  Google Scholar 

  26. Ohta, S., Shimizu, A., Imai, Y., Abe, H., Hatano, N., Yoshimura, Y.: Peculiar concentration dependence of H/D exchange reaction in 1-butyl-3-methylimidazolium tetrafluoroborate-D\(_2\)O mixtures. Open J. Phys. Chem. 01(03), 70–76 (2011). https://doi.org/10.4236/ojpc.2011.13010

    Article  CAS  Google Scholar 

  27. Allen, J.J., Bowser, S.R., Damodaran, K.: Molecular interactions in the ionic liquid emim acetate and water binary mixtures probed via NMR spin relaxation and exchange spectroscopy. Phys. Chem. Chem. Phys. 16(17), 8078–8085 (2014). https://doi.org/10.1039/c3cp55384a

    Article  CAS  PubMed  Google Scholar 

  28. Horikawa, Y., Sugiyama, J.: Accessibility and size of Valonia cellulose microfibril studied by combined deuteration/rehydrogenation and FTIR technique. Cellulose 15(3), 419–424 (2008). https://doi.org/10.1007/s10570-007-9187-z

    Article  CAS  Google Scholar 

  29. Reishofer, D., Spirk, S.: Deuterium and cellulose: A comprehensive review. Adv. Polym. Sci. 271, 93–114 (2016). https://doi.org/10.1007/12_2015_321

    Article  CAS  Google Scholar 

  30. Pönni, R., Rautkari, L., Hill, C.A.S., Vuorinen, T.: Accessibility of hydroxyl groups in birch kraft pulps quantified by deuterium exchange in D\(_2\)O vapor. Cellulose 21(3), 1217–1226 (2014). https://doi.org/10.1007/s10570-014-0166-x

    Article  CAS  Google Scholar 

  31. Suchy, M., Kontturi, E., Vuorinen, T.: Impact of drying on wood ultrastructure: similarities in cell wall alteration between native wood and isolated wood-based fibers. Biomacromolecules 11(8), 2161–2168 (2010). https://doi.org/10.1021/bm100547n

    Article  CAS  PubMed  Google Scholar 

  32. Jiang, Z., Fan, J., Budarin, V.L., Macquarrie, D.J., Gao, Y., Li, T., Hu, C., Clark, J.H.: Mechanistic understanding of salt-assisted autocatalytic hydrolysis of cellulose. Sustain. Energy Fuels 2(5), 936–940 (2018). https://doi.org/10.1039/C8SE00045J

    Article  CAS  Google Scholar 

  33. Hishikawa, Y., Togawa, E., Kataoka, Y., Kondo, T.: Characterization of amorphous domains in cellulosic materials using a FTIR deuteration monitoring analysis. Polymer 40(25), 7117–7124 (1999). https://doi.org/10.1016/S0032-3861(99)00120-2

    Article  CAS  Google Scholar 

  34. Wahba, M.: Kinetics of the deuteration of cellulose: An infrafred study with D\(_2\)O–H\(_2\)O vapours. Chem. Scr. 11(4–5), 158–163 (1977)

    CAS  Google Scholar 

  35. Mullangi, V., Zhou, X., Ball, D.W., Anderson, D.J., Miyagi, M.: Quantitative measurement of the solvent accessibility of histidine imidazole groups in proteins. Biochemistry 51(36), 7202–7208 (2012). https://doi.org/10.1021/bi300911d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Amyes, T.L., Diver, S.T., Richard, J.P., Rivas, F.M., Toth, K.: Formation and stability of n-heterocyclic carbenes in water: the carbon acid pK\(_a\) of imidazolium cations in aqueous solution. J. Am. Chem. Soc. 126(13), 4366–4374 (2004). https://doi.org/10.1021/ja039890j

    Article  CAS  PubMed  Google Scholar 

  37. Bai, Y., Milne, John S., Mayne, Leland, Englander, S.W.: Primary structure effects on peptide group hydrogen exchange. Proteins 17, 75–88 (1993). https://doi.org/10.1002/prot.340170110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Amyes, T.L., Richard, J.P.: Determination of the pK \(_a\) of ethyl acetate: Brønsted correlation for deprotonation of a simple oxygen ester in aqueous solution. J. Am. Chem. Soc. 118, 3129–3141 (1996). https://doi.org/10.1021/ja953664v

    Article  CAS  Google Scholar 

  39. Walz, O., Marks, C., Viell, J., Mitsos, A.: Systematic approach for modeling reaction networks involving equilibrium and kinetically-limited reaction steps. Comput. Chem. Eng. 98, 143–153 (2017). https://doi.org/10.1016/j.compchemeng.2016.12.014

    Article  CAS  Google Scholar 

  40. Khan, I., Kurnia, K.A., Mutelet, F., Pinho, S.P., Coutinho, J.A.P.: Probing the interactions between ionic liquids and water: experimental and quantum chemical approach. J. Phys. Chem. B 118(7), 1848–1860 (2014). https://doi.org/10.1021/jp4113552

    Article  CAS  PubMed  Google Scholar 

  41. Simoni, L.D., Brennecke, J.F., Stadtherr, M.A.: Asymmetric framework for predicting liquid\(-\)liquid equilibrium of ionic liquid–mixed-solvent systems. 1. Theory, phase stability analysis, and parameter estimation. Ind. Eng. Chem. Res 48(15), 7246–7256 (2009). https://doi.org/10.1021/ie900461j

    Article  CAS  Google Scholar 

  42. Chen, Y., Li, S., Xue, Z., Hao, M., Mu, T.: Quantifying the hydrogen-bonding interaction between cation and anion of pure [EMIM][Ac] and evidencing the ion pairs existence in its extremely diluted water solution: Via \(^{13}\)C, \(^1\)H, \(^{15}\)N and 2D NMR. J. Mol. Struct. 1079, 120–129 (2015). https://doi.org/10.1016/j.molstruc.2014.09.023

    Article  CAS  Google Scholar 

  43. Hall, C.A., Le, K.A., Rudaz, C., Radhi, A., Lovell, C.S., Damion, R.A., Budtova, T., Ries, M.E.: Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate–water mixtures. J. Phys. Chem. B 116(42), 12810–12818 (2012). https://doi.org/10.1021/jp306829c

    Article  CAS  PubMed  Google Scholar 

  44. Chen, Y., Cao, Y., Sun, X., Mu, T.: Hydrogen bonding interaction between acetate-based ionic liquid 1-ethyl-3-methylimidazolium acetate and common solvents. J. Mol. Liq. 190, 151–158 (2014). https://doi.org/10.1016/j.molliq.2013.11.010

    Article  CAS  Google Scholar 

  45. Wong, J.L., Keck, J.H.: Positional reactivities and mechanisms of deuteration of 1-methylimidazole in pD and -D\(_0\) regions. Reinvestigation of the kinetics of 2-hydrogen exchange in imidazole. J. Org. Chem 39(16), 2398–2403 (1974). https://doi.org/10.1021/jo00930a015

    Article  CAS  Google Scholar 

  46. Hatano, N., Watanabe, M., Takekiyo, T., Abe, H., Yoshimura, Y.: Anomalous conformational change in 1-butyl-3-methylimidazolium tetrafluoroborate–D\(_2\)O mixtures. J. Phys. Chem. A 116(4), 1208–1212 (2012). https://doi.org/10.1021/jp2097873

    Article  CAS  PubMed  Google Scholar 

  47. Chen, Y., Cao, Y., Zhang, Y., Mu, T.: Hydrogen bonding between acetate-based ionic liquids and water: three types of IR absorption peaks and NMR chemical shifts change upon dilution. J. Mol. Struct. 1058, 244–251 (2014). https://doi.org/10.1016/j.molstruc.2013.11.010

    Article  CAS  Google Scholar 

  48. Kar, M., Plechkova, N.V., Seddon, K.R., Pringle, J.M., MacFarlane, D.R.: Ionic liquids: further progress on the fundamental issues. Aust. J. Chem. 72(2), 3 (2019). https://doi.org/10.1071/CH18541

    Article  CAS  Google Scholar 

  49. Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., Scrosati, B.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8(8), 621–629 (2009). https://doi.org/10.1038/nmat2448

    Article  CAS  PubMed  Google Scholar 

  50. MacFarlane, D.R., Tachikawa, N., Forsyth, M., Pringle, J.M., Howlett, P.C., Elliott, G.D., Davis, J.H., Watanabe, M., Simon, P., Angell, C.A.: Energy applications of ionic liquids. Energy Environ. Sci. 7(1), 232–250 (2014). https://doi.org/10.1039/C3EE42099J

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - Exzellenzcluster 236 “Tailor-Made Fuels from Biomass”. We thank our colleagues Olga Walz and Luisa Brée for their support concerning the modeling part of this study. We would also like to thank Prof. Walter Leitner for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Viell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1134kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marks, C., Mitsos, A. & Viell, J. Change of C(2)-Hydrogen–Deuterium Exchange in Mixtures of EMIMAc. J Solution Chem 48, 1188–1205 (2019). https://doi.org/10.1007/s10953-019-00899-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00899-7

Keywords

Navigation