Skip to main content
Log in

A Search for the Protonation Model with Thermodynamic Dissociation Constants and (Extra)-Thermodynamics of Nilotinib Hydrochloride (TASIGNA)

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Nilotinib hydrochloride (AMN107, TASIGNA, Novartis) is used to treat adults with chronic myeloid leukemia (CML), a type of leukemia. It is a novel, orally active BCR-ABL tyrosine kinase inhibitor derived from aminopyrimidine that is 30 times more effective against CML cells than is Imatinib. The nonlinear regression of the A versus pH spectra with REACTLAB and SQUAD84 and of the pH-titration curve with ESAB determined the four close and consecutive dissociation constants in the 11 steps of the newly proposed procedure. Prediction of pKa performed by MARVIN, PALLAS and ACD/Percepta determined the protonation sites. The sparingly soluble nilotinib hydrochloride denoted as L forms four water-soluble LH+, \({\text{LH}}_{2}^{2 + }\), \({\text{LH}}_{3}^{3 + }\), and \({\text{LH}}_{4}^{4 + }\) cations. Although the adjusted pH has less effect on the absorbance changes in the chromophore, four thermodynamic dissociation constants were reliably determined: \({\text{p}}K_{\text{a1}}^{\text{T}}\) = 3.60 ± 0.04, \({\text{p}}K_{\text{a2}}^{\text{T}}\) = 4.42 ± 0.07, \({\text{p}}K_{\text{a3}}^{\text{T}}\) = 4.71 ± 0.04, and \({\text{p}}K_{\text{a4}}^{\text{T}}\) = 4.84 ± 0.03 at 25 °C and \({\text{p}}K_{\text{a1}}^{\text{T}}\) = 3.61 ± 0.11, \({\text{p}}K_{\text{a2}}^{\text{T}}\) = 4.29 ± 0.18, \({\text{p}}K_{\text{a3}}^{\text{T}}\) = 4.49 ± 0.02, and \({\text{p}}K_{\text{a4}}^{\text{T}}\) = 5.05 ± 0.03 at 37 °C, and by regression analysis of potentiometric titration curves with ESAB, \({\text{p}}K_{\text{a1}}^{\text{T}}\) = 3.74 ± 0.01, \({\text{p}}K_{\text{a2}}^{\text{T}}\) = 4.05 ± 0.01, \({\text{p}}K_{\text{a3}}^{\text{T}}\) = 4.25 ± 0.01, and \({\text{p}}K_{\text{a4}}^{\text{T}}\) = 4.91 ± 0.20 at 25 °C and \({\text{p}}K_{\text{a1}}^{\text{T}}\) = 3.63 ± 0.03, \({\text{p}}K_{\text{a2}}^{\text{T}}\) = 3.96 ± 0.03, \({\text{p}}K_{\text{a3}}^{\text{T}}\) = 4.18 ± 0.03, and \({\text{p}}K_{4 1}^{\text{T}}\) = 4.81 ± 0.05 at 37 °C. Positive enthalpy values ΔH° at 25 °C showed that the dissociation process is endothermic and is accompanied by heat absorption. Inasmuch as the entropy values of the dissociation process ΔS° at 25 °C and 37 °C were negative, the dissociation process is reversible.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1

Similar content being viewed by others

References

  1. Gora-Tybor, J., Robak, T.: Targeted drugs in chronic myeloid leukemia. Curr. Med. Chem. 15(29), 3036–3051 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. IUPAC Compendium of Chemical Technology—the Gold Book, Version 2.3.3, 2014-02-254. IUPAC Secretariat, Research Triangle Park, NC

  3. Pandey, M.M., Jaipal, A., Kumar, A., Malik, R., Charde, S.Y.: Determination of pK(a) of Felodipine using UV-visible spectroscopy. Spectrochim. Acta A 115, 887–890 (2013)

    Article  CAS  Google Scholar 

  4. Milletti, F., Storchi, L., Sforna, G., Cruciani, G.: New and original pKa prediction method using grid molecular interaction fields. J. Chem. Inf. Model. 47, 2172–2181 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. Manallack, D.T.: The pK(a) distribution of drugs: application to drug discovery. Perspect. Med. Chem. 1, 25–38 (2007)

    Google Scholar 

  6. Settimo, L., Bellman, K., Knegtel, R.A.: Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds. Pharm. Res. 31, 1082–1095 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. Tam, K.Y., Takacs-Novak, K.: Multiwavelength spectrophotometric determination of acid dissociation constants: a validation study. Anal. Chim. Acta 434, 157–167 (2001)

    Article  CAS  Google Scholar 

  8. Meloun, M., Ferenčíková, Z.: Enthalpy–entropy compensation for some drugs dissociation in aqueous solutions. Fluid Phase Equil. 328, 31–41 (2012)

    Article  CAS  Google Scholar 

  9. Sillén, L.G., Warnqvist, B.: Equilibrium constants and model testing from spectrophotometric data using Letagrop. Acta Chem. Scand. 22(9), 3001–3034 (1968)

    Google Scholar 

  10. Sillén, L.G., Warnqvist, B.: High-speed computers as a supplement to graphical methods. 7. Model selection and rejection with Letagrop. Elimination of species with negative or insignificant equilibrium constants. Ark Kemi 31(4), 341–352 (1969)

    Google Scholar 

  11. Sillén, L.G., Warnqvist, B.: High-speed computers as a supplement to graphical gethods. 6. A strategy for 2-level Letagrop adjustment of common and group parameters Some features that avoid divergence. Ark Kemi 31(4), 315–339 (1969)

    Google Scholar 

  12. Sillén, L.G., Warnqvist, B.: High-speed computers as a supplement to graphical methods. 10. Application of Letagrop to spectrophotometric data, for testing models and adjusting equilibrium constants. Ark Kemi 31(4), 377–390 (1969)

    Google Scholar 

  13. De Stefano, C., Princi, P., Rigano, C., Sammartano, S.: Computer analysis of equilibrium data in solution ESAB2 M: an improved version of the ESAB program. Ann. Chim. (Rome) 77(7–8), 643–675 (1987)

    Google Scholar 

  14. Rigano, C., Grasso, M., Sammartano, S.: Computer-analysis of equilibrium data in solution—a compact least-squares computer-program for acid–base titrations. Ann. Chim. (Rome) 74(7–8), 532–537 (1984)

    Google Scholar 

  15. Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184, 311–318 (1999)

    Article  CAS  Google Scholar 

  16. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43(10), 1739–1753 (1996)

    Article  CAS  PubMed  Google Scholar 

  17. Gans, P., Sabatini, A., Vacca, A.: Hyperquad computer-program suite. Abstr. Pap. Am. Chem. Soc. 219, U763–U763 (2000)

    Google Scholar 

  18. Gans, P., Sabatini, A., Vacca, A.: Simultaneous calculation of equilibrium constants and standard formation enthalpies from calorimetric data for systems with multiple equilibria in solution. J. Solution Chem. 37(4), 467–476 (2008)

    Article  CAS  Google Scholar 

  19. Allen, R.I., Box, K.J., Comer, J.E.A., Peake, C., Tam, K.Y.: Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs. J. Pharm. Biomed. Anal. 17(4–5), 699–712 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Hartley, F.R., Burgess, C., Alcock, R.M.: Solution Equilibria. Ellis Horwood, Chichester (1980)

    Google Scholar 

  21. Leggett, D.J., McBryde, W.A.E.: General computer program for the computation of stability constants from absorbance data. Anal. Chem. 47(7), 1065–1070 (1975)

    Article  CAS  Google Scholar 

  22. Kankare, Jouko J.: Computation of equilibrium constants for multicomponent systems from spectrophotometric data. Anal. Chem. 42(12), 1322–1326 (1970)

    Article  CAS  Google Scholar 

  23. Ribeiro, A.R., Schmidt, T.C.: Determination of acid dissociation constants (pK(a)) of cephalosporin antibiotics: computational and experimental approaches. Chemosphere 169, 524–533 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. ACD/Labs pKa Predictor 3.0. In: Inc., A.C.D. (ed.). Toronto, Canada (2007)

  25. Balogh, G.T., Gyarmati, B., Nagy, B., Molnar, L., Keseru, G.M.: Comparative evaluation of in silico pK(a) prediction tools on the gold standard dataset. QSAR Comb. Sci. 28(10), 1148–1155 (2009)

    Article  CAS  Google Scholar 

  26. Balogh, G.T., Tarcsay, A., Keseru, G.M.: Comparative evaluation of pK(a) prediction tools on a drug discovery dataset. J. Pharm. Biomed. Anal. 67–68, 63–70 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. Evagelou, V., Tsantili-Kakoulidou, A., Koupparis, M.: Determination of the dissociation constants of the cephalosporins Cefepime and Cefpirome using UV spectrometry and pH potentiometry. J. Pharm. Biomed. Anal. 31(6), 1119–1128 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. Liao, C.Z., Nicklaus, M.C.: Comparison of nine programs predicting pK(a) values of pharmaceutical substances. J. Chem. Inf. Model. 49(12), 2801–2812 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. Roda, G., Dallanoce, C., Grazioso, G., Liberti, V., De Amici, M.: Determination of acid dissociation constants of compounds active at neuronal nicotinic acetylcholine receptors by means of electrophoretic and potentiometric techniques. Anal. Sci. 26(1), 51–54 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. Bezencon, J., Wittwer, M.B., Cutting, B., Smiesko, M., Wagner, B., Kansy, M., Ernst, B.: pK(a) determination by H-1 NMR spectroscopy—an old methodology revisited. J. Pharm. Biomed. Anal. 93, 147–155 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. Hansen, N.T., Kouskoumvekaki, I., Jorgensen, F.S., Brunak, S., Jonsdottir, S.O.: Prediction of pH-dependent aqueous solubility of drug like molecules. J. Chem. Inf. Model. 46(6), 2601–2609 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. Manchester, J., Walkup, G., Rivin, O., You, Z.P.: Evaluation of pK(a) estimation methods on 211 drug like compounds. J. Chem. Inf. Model. 50(4), 565–571 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. ten Brink, T., Exner, T.E.: pK(a) based protonation states and microspecies for protein–ligand docking. J. Comput. Aid. Mol. Des. 24(11), 935–942 (2010)

    Article  CAS  Google Scholar 

  34. Meloun, M., Syrový, T., Bordovská, S., Vrána, A.: Reliability and uncertainty in the estimation of pK(a) by least squares nonlinear regression analysis of multiwavelength spectrophotometric pH titration data. Anal. Bioanal. Chem. 387(3), 941–955 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. Meloun, M., Bordovská, S., Vrána, A.: The thermodynamic dissociation constants of the anticancer drugs camptothecine, 7-ethyl-10-hydroxycamptothecine, 10-hydroxycamptothecine and 7-ethylcamptothecine by the least-squares nonlinear regression of multiwavelength spectrophotometric pH-titration data. Anal. Chim. Acta 584(2), 419–432 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. Meloun, M., Bordovská, S., Syrový, T., Vrána, A.: Tutorial on a chemical model building by least-squares non-linear regression of multiwavelength spectrophotometric pH-titration data. Anal. Chim. Acta 580(1), 107–121 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. Meloun, M., Pilařová, L., Pekárek, T., Javůrek, M.: Overlapping pK(a) of the multiprotic hemostyptic eltrombopag using UV-Vis multiwavelength spectroscopy and potentiometry. J. Solution Chem. 46(11), 2014–2037 (2017)

    Article  CAS  Google Scholar 

  38. Meloun, M., Čápová, A., Pilařová, L., Pekárek, T.: Multiwavelength UV-metric and pH-metric determination of the multiple dissociation constants of the Lesinurad. J. Pharm. Biomed. Anal. 158, 236–246 (2018)

    Article  CAS  PubMed  Google Scholar 

  39. Maeder, M., King, P.: Analysis of Chemical Processes, Determination of the Reaction Mechanism and Fitting of Equilibrium and/or Rate Constants. https://www.intechopen.com/books/c (2012)

  40. Meloun, M., Čapek, J., Mikšík, P., Brereton, R.G.: Critical comparison of methods predicting the number of components in spectroscopic data. Anal. Chim. Acta 423(1), 51–68 (2000)

    Article  CAS  Google Scholar 

  41. ORIGIN.: OriginLab Corporation, One Roundhouse Plaza, Suite 303, Northampton, MA 01060, USA (2019)

  42. Krotz-Vogel, W., Hoppe, H.C.: The PALLAS parallel programming environment. Lect. Notes Comput. Sci. 1332, 257–266 (1997)

    Article  Google Scholar 

  43. Meloun, M., Pilařová, L., Čápová, A., Pekárek, T.: The overlapping thermodynamic dissociation constants of the antidepressant Vortioxetine using UV–VIS multiwavelength pH-titration data. J. Solution Chem. 47(5), 806–826 (2018)

    Article  CAS  Google Scholar 

  44. Meloun, M., Nečasová, V., Javůrek, M., Pekárek, T.: The dissociation constants of the cytostatic Bosutinib by nonlinear least-squares regression of multiwavelength spectrophotometric and potentiometric pH-titration data. J. Pharm. Biomed. Anal. 120, 158–167 (2016)

    Article  CAS  PubMed  Google Scholar 

  45. Meloun, M., Pilařová, L., Bureš, F., Pekárek, T.: Multiple dissociation constants of the Interpirdine hydrochloride using regression of multiwavelength spectrophotometric pH-titration data. J. Mol. Liq. 261, 480–491 (2018)

    Article  CAS  Google Scholar 

  46. Rodante, F., Fantauzzi, F.: Thermodynamic analysis of the ionization of ortho and para toluic acids—influence of the medium on the hyperconjugative and steric effects. Thermochim. Acta 109(2), 353–365 (1987)

    Article  CAS  Google Scholar 

  47. Hu, J.H., Zhuang, P., Lin, R.S., Xie, Y.S.: Ionization thermodynamics of methylbenzoic acids in water–DMF mixtures. Thermochim. Acta 262, 227–231 (1995)

    Article  CAS  Google Scholar 

  48. Nan, Y.Q., Yu, Q.S., Lin, R.S.: Thermodynamics of ionization of o-fluoro and o-chloro benzoic acids in water–ethanol mixtures at 298.15 K. Thermochim. Acta 317(2), 201–203 (1998)

    Article  CAS  Google Scholar 

  49. Hu, X.G., Li, S.Q., Lin, R.S., Zong, H.X.: Enthalpic and entropic contributions to substituent effects on the ionization of meta- and para-nitrobenzoic acids in EtOH–H2O mixtures at 298.15 K. Thermochim. Acta 319(1–2), 43–45 (1998)

    Article  CAS  Google Scholar 

  50. Hu, X.G., Lin, R.S., Zong, H.X.: Ionization thermodynamics of methylbenzoic acids in EtOH–H2O mixtures. Thermochim. Acta 326(1–2), 1–5 (1999)

    Article  CAS  Google Scholar 

  51. Gruber, C., Buss, V.: Quantum mechanically calculated properties for the development of quantitative structure-activity-relationships (QSARs)—pKa values of phenols and aromatic and aliphatic carboxylic-acids. Chemosphere 19(10–11), 1595–1609 (1989)

    Article  Google Scholar 

  52. Trapani, G., Carotti, A., Franco, M., Latrofa, A., Genchi, G., Liso, G.: Structure affinity relationships of some alkoxycarbonyl-2H-pyrimido[2,1-B]benzothiazol-2-ones or alkoxycarbonyl-4H-pyrimido[2,1-B]benzothiazol-4-ones benzodiazepine receptor ligands. Eur. J. Med. Chem. 28(1), 13–21 (1993)

    Article  CAS  Google Scholar 

  53. Shusterman, A.J.: Predicting mutagenicity—use a technique thats been useful in predicting efficacy. ChemTech 21(10), 624–627 (1991)

    CAS  Google Scholar 

  54. Debnath, A.K., Shusterman, A.J., Decompadre, R.L.L., Hansch, C.: The Importance of the hydrophobic interaction in the mutagenicity of organic-compounds. Mutat. Res. 305(1), 63–72 (1994)

    Article  CAS  PubMed  Google Scholar 

  55. Aguerre, R.J., Suarez, C., Viollaz, P.E.: Enthalpy–entropy compensation in sorption phenomena—application to the prediction of the effect of temperature on food isotherms. J. Food Sci. 51(6), 1547–1549 (1986)

    Article  CAS  Google Scholar 

  56. Gabas, A.L., Menegalli, F.C., Telis-Romero, J.: Water sorption enthalpy–entropy compensation based on isotherms of plum skin and pulp. J. Food Sci. 65(4), 680–684 (2000)

    Article  CAS  Google Scholar 

  57. Gabas, A.L., Telis-Romero, J., Menegalli, F.C.: Thermodynamic models for water sorption by grape skin and pulp. Dry. Technol. 17(4–5), 961–974 (1999)

    CAS  Google Scholar 

  58. Labuza, T.P.: Enthalpy–entropy compensation in food reactions. Food Technol. 34(2), 67–77 (1980)

    CAS  Google Scholar 

  59. Sugihara, G., Hisatomi, M.: Enthalpy–entropy compensation phenomenon observed for different surfactants in aqueous solution. J. Colloid Interf. Sci. 219(1), 31–36 (1999)

    Article  CAS  Google Scholar 

  60. Liu, L., Guo, Q.X.: Isokinetic relationship, isoequilibrium relationship, and enthalpy–entropy compensation. Chem. Rev. 101(3), 673–695 (2001)

    Article  CAS  PubMed  Google Scholar 

  61. Schmid, R., Miah, A.M., Sapunov, V.N.: A new table of the thermodynamic quantities of ionic hydration: values and some applications (enthalpy–entropy compensation and Born radii). Phys. Chem. Chem. Phys. 2(1), 97–102 (2000)

    Article  CAS  Google Scholar 

  62. Goodman, M.F.: Hydrogen bonding revisited: geometric selection as a principal determinant of DNA replication fidelity. Proc. Natl. Acad. Sci. USA 94(20), 10493–10495 (1997)

    Article  CAS  PubMed  Google Scholar 

  63. Lumry, R., Rajender, S.: Enthalpy–entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers 9(10), 1125–1227 (1970)

    Article  CAS  PubMed  Google Scholar 

  64. Dunitz, J.D.: Win some, lose some—enthalpy–entropy compensation in weak intermolecular interactions. Chem. Biol. 2(11), 709–712 (1995)

    Article  CAS  PubMed  Google Scholar 

  65. Meloun, M., Havel, J., Högfeldt, E.: Computation of Solution Equilibria: A Guide to Methods in Potentiometry, Extraction, and Spectrophotometry. Ellis Horwood Series in Analytical Chemistry. Ellis Horwood Chichester, England (1988)

    Google Scholar 

  66. Meloun, M., Ferenčíková, Z., Javůrek, M.: Reliability of dissociation constants and resolution capability of SQUAD(84) and SPECFIT/32 in the regression of multiwavelength spectrophotometric pH-titration data. Spectrochim. Acta A 86, 305–314 (2012)

    Article  CAS  Google Scholar 

  67. Meloun, M., Militký, J., Forina, M.: Chemometrics for Analytical Chemistry: PC-aided Regression and Related Methods, vol. 2. Ellis Horwood, Chichester (1994)

    Google Scholar 

  68. Leggett, D.J., Kelly, S.L., Shiue, L.R., Wu, Y.T., Chang, D., Kadish, K.M.: A computational approach to the spectrophotometric determination of stability constants—II. Application to metalloporphyrin-axial ligand interactions in non-aqueous solvents. Talanta 30(8), 579–586 (1983)

    Article  CAS  PubMed  Google Scholar 

  69. Meloun, M., Militký, J., Forina, M.: Chemometrics for Analytical Chemistry, : PC-Aided Statistical Data Analysis, Chemometrics for Analytical Chemistry, vol. 1. Ellis Horwood, Chichester (1992)

    Google Scholar 

  70. Meloun, M., Militký, J.: Statistical Data Analysis: A Practical Guide, Complete with 1250 Exercises and Answer Key on CD, 1st edn. Woodhead Publishing Limited, 80 High Street Sawstone Cambridge, CB22 3HJ, UK, New Delhi, Oxford, Philadelphia (2011)

  71. Meloun, M., Bartoš, M., Högfeldt, E.: Multiparametric curve fitting. 13. Reliability of formation-constants determined by analysis of potentiometric titration data. Talanta 35(12), 981–991 (1988)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Meloun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meloun, M., Pilařová, L., Javůrek, M. et al. A Search for the Protonation Model with Thermodynamic Dissociation Constants and (Extra)-Thermodynamics of Nilotinib Hydrochloride (TASIGNA). J Solution Chem 48, 702–731 (2019). https://doi.org/10.1007/s10953-019-00882-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00882-2

Keywords

Navigation