Skip to main content
Log in

Apparent Molar (Volumetric/Compressibility) and Transport Properties of d-Maltose-1-Butyl-3-methylimidazolium Hexafluorophosphate—Water Ternary Systems at Different Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Densities, speeds of sound and viscosities of different molalities of d-maltose in aqueous solutions of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate, have been measured, for temperature steps of 5 K, from 293.15 to 313.15 K at atmospheric pressure. From the experimental data, apparent molar volumes, limiting apparent molar volumes, apparent molar compressibilities, limiting apparent molar compressibilities, transfer volumes and compressibilities, limiting apparent molar expansibilities, thermal expansion coefficients, relative viscosities and Jones–Dole B-coefficients have been estimated. The results have been examined in terms of hydrophobic–ionic and hydrophilic–ionic interactions. It is observed that strong solute–solvent interactions exist in the ternary system which increase with increasing ionic liquid concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wilkes, J.S.: Properties of ionic liquid solvents for catalysis. J. Mol. Catal. A 214, 11–17 (2004)

    Article  CAS  Google Scholar 

  2. Brennecke, J.F., Maginn, E.J.: ionic liquids: innovative fluids for chemical processing. AIChE J. 47, 2384–2389 (2001)

    Article  CAS  Google Scholar 

  3. Wasserscheid, P., Keim, W.: Ionic liquids–new solutions for transition metal catalysis. Angew. Chem. Int. Ed. 39, 3772–3789 (2000)

    Article  CAS  Google Scholar 

  4. Keshapolla, D., Singh, V., Gardas, R.L.: Volumetric, acoustic and transport properties of binary mixtures of benzyldimethylammonium based ionic liquids with N,N- dimethylformamide at temperature from 293.15 to 328.15 K. J. Mol. Liq. 199, 330–338 (2014)

    Article  CAS  Google Scholar 

  5. Welton, T.: Room temperature ionic liquids solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Endres, F., El Abedin, S.Z.: Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys. 8, 2101–2116 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. Freemantle, M.: An Introduction to Ionic Liquids. Royal Society of Chemistry, Cambridge (2009)

    Google Scholar 

  8. Singh, V., Banipal, P.K., Gardas, R.L., Banipal, T.S.: Speed of sound and apparent molar isentropic compressibility of 1-butyl-3-methylimidazolium bromide in aqueous monosaccharide solutions. J. Mol. Liq. 223, 54–59 (2016)

    Article  CAS  Google Scholar 

  9. Ping, J., Wang, Y., Ying, Y., Ji, F.: Determination of ascorbic acid levels in food samples by using an ionic liquid–carbon nanotube composite electrode. Food Chem. 135, 362–367 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D.: Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Lopes, A.C., Joao, K.G., Bogel-Lukasik, E.: Pretreatment and fractionation of wheat straw using various ionic liquids. J. Agric. Food Chem. 61, 7874–7882 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. Conceicao, L.J.A., Bogel-Lukasik, E., Bogel-Lukasik, R.: A new outlook on solubility of carbohydrates and sugar alcohols in ionic liquids. RSC Adv. 2, 1846–1855 (2012)

    Article  CAS  Google Scholar 

  13. Xu, A., Zhang, Y., Zhao, Y., Wang, J.: Cellulose dissolution at ambient temperature: role of preferential solvation of cations of ionic liquids by a cosolvent. Carbohyd. Polym. 92, 540–544 (2013)

    Article  CAS  Google Scholar 

  14. Ali, M., Sarkar, A., Tariq, M., Ali, A., Pandey, S.: Dilute aqueous 1-butyl-3-methylimidazolium hexafluorophosphate: properties and solvatochromic probe behavior. Green Chem. 9, 1252–1258 (2007)

    Article  CAS  Google Scholar 

  15. Wu, B., Zhang, Y., Wang, H.: Phase behaviour for ternary systems composed of ionic liquids + saccharides + water. J. Phys. Chem. B. 112, 6426–6429 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. Wu, B., Zhang, Y., Wang, H., Yang, L.: Temperature dependence of phase behaviour for ternary systems composed of ionic liquid + sucrose + water. J. Phys. Chem. B. 112, 13163–13165 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. Chen, Y., Zhang, S.: Phase behaviour of (1-alkyl-3-methyl imidazoliumtetrafluoroborate + 6-(hydroxymethyl) oxane-2,3,4,5-tetrol + water. J. Chem. Eng. Data 55, 278–282 (2010)

    Article  CAS  Google Scholar 

  18. Chen, Y., Meng, Y., Zhang, S., Zhang, Y., Liu, X., Yang, J.: Liquid–liquid equilibria of aqueous biphasic systems composed of 1-butyl-3-methyl imidazoliumtetrafluoroborate + sucrose/maltose + water. J. Chem. Eng. Data 55, 3612–3616 (2010)

    Article  CAS  Google Scholar 

  19. Quental, M.V., Passos, H., Kurnia, K.A., Coutinho, J.A.P., Freire, M.G.: Aqueous biphasic systems composed of ionic liquids and acetate-based salts: phase diagrams, densities and viscosities. J. Chem. Eng. Data 60, 1674–1682 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, Y., Fang, M., Bai, G., Zhuo, K., Yan, C.: Conductivities of 1-alkyl-3-methylimidazolium chloride ionic liquids in disaccharides + water solutions at 298.15 K. J. Chem. Eng. Data 61, 3779–3787 (2016)

    Article  CAS  Google Scholar 

  21. Banipal, P.K., Chahal, A.K., Banipal, T.S.: Studies on volumetric properties of some saccharides in aqueous potassium chloride solutions over temperature K. J. Chem. Thermodyn. 41, 452–483 (2009)

    Article  CAS  Google Scholar 

  22. Singh, V., Banipal, P.K., Banipal, T.S., Gardas, R.L.: Volumetric properties of disaccharides in aqueous solutions of benzyldimethylammonium acetate as a function of temperature. J. Chem. Eng. Data 60, 1764–1775 (2015)

    Article  CAS  Google Scholar 

  23. Wang, S., Jacquemin, J., Husson, P., Hardacre, C., Gomes, M.F.C.: Liquid–liquid miscibility and volumetric properties of aqueous solutions of ionic liquids as a function of temperature. J. Chem. Thermodyn. 41, 1206–1214 (2009)

    Article  CAS  Google Scholar 

  24. Jacquemin, J., Husson, P., Padua, A.A.H., Majer, V.: Density and viscosity of several pure and water-saturated ionic liquids. Green Chem. 8, 172–180 (2006)

    Article  CAS  Google Scholar 

  25. Zhang, J., Wu, W., Gao, H., Liu, Z., Han, B.: Conductivities and viscosities of the ionic liquid [Bmim][PF6] + water + ethanol and [Bmim][PF6] + water + acetone ternary mixtures. J. Chem. Eng. Data 48, 1315–1317 (2003)

    Article  CAS  Google Scholar 

  26. Rafiee, H.R., Frouzesh, F.: Volumetric properties of ionic liquids, 1-ethyl-3-ethylimidazolium chloride and 1-ethyl-3-methylimidazolium hydrogen sulphate in sucrose aqueous solutions at T = (293.15–313.15) K and ambient pressure. Fluid Phase Equib. 425, 120–126 (2016)

    Article  CAS  Google Scholar 

  27. Singh, V., Chhotaray, P.K., Gardas, R.L.: Effect of protic ionic liquid on the volumetric properties and taste behaviour of sucrose. Food Chem. 169, 478–483 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. Gurney, R.W.: Ionic Processes in Solution. McGraw Hill, New York (1953)

    Google Scholar 

  29. Jin, H.X., Chen, H.Y.: Volumetric properties for ionic liquid sucrose water systems. J. Chem. Eng. Data 56, 4392–4395 (2011)

    Article  CAS  Google Scholar 

  30. Shekaari, H., Kazempour, A.: Effect of ionic liquid, 1-octyl-3-methylimidazolium bromide, on the thermophysical properties of aqueous d-glucose solutions at 298.15 K. Fluid Phase Equilib. 309, 1–7 (2011)

    Article  CAS  Google Scholar 

  31. Shekaari, H., Mansoori, Y., Kazempour, A.: Conductance behavior of ionic liquids, 1-alkyl-3-methylimidazolium bromide, in aqueous d-xylose solutions. Electrochim. Acta 67, 104–108 (2012)

    Article  CAS  Google Scholar 

  32. Jin, H.X., Chen, H.Y.: Volumetric properties for ionic liquid + sucrose + water systems. J. Chem. Eng. Data 57, 4392–4395 (2011)

    Article  CAS  Google Scholar 

  33. McMillan Jr., W.G., Mayer, J.E.: The statistical thermodynamics of multicomponent systems. J. Chem. Phys. 13, 276–305 (1945)

    Article  CAS  Google Scholar 

  34. Kozak, J.J., Knight, W.S., Kauzman, W.: Solute–solute interactions in aqueous solutions. J. Chem. Phys. 48, 675–690 (1968)

    Article  CAS  Google Scholar 

  35. Krishnan, C.V., Friedman, H.L.: Enthalpy of alkyl sulphonates in water, heavy water, and water–alcohol mixtures and the interaction of water with methylene groups. J. Solution Chem. 2, 37–51 (1973)

    Article  Google Scholar 

  36. Franks, F., Pedley, M., Reid, D.S.: Solute interactions in dilute aqueous solutions, Part I. Microcalorimetric study of the hydrophobic interaction. J. Chem. Soc. Faraday Trans. 172, 359–367 (1976)

    Article  Google Scholar 

  37. Desnoyers, J.E., Arel, M., Perron, G., Jolicoeur, C.: Apparent molal volumes of alkali halides in water at 25 °C. Influence of structural hydration interactions on the concentration dependence. J. Phys. Chem. 73, 3346–3351 (1969)

    Article  CAS  Google Scholar 

  38. Conway, B.E.: Ionic Hydration in Chemistry and Biophysics. Elsevier, Amsterdam (1981)

    Google Scholar 

  39. Hepler, L.G.: Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613–4617 (1969)

    Article  CAS  Google Scholar 

  40. Roy, M.N., Dakua, V.K., Sinha, B.: Partial molar volumes, viscosity B-coefficients, and adiabatic compressibilities of sodium molybdate in aqueous 1,3-dioxolane mixtures from 303.15 to 323.15 K. Int. J. Thermophys. 28, 1275–1284 (2007)

    Article  CAS  Google Scholar 

  41. Singh, V., Banipal, P.K., Banipal, T.S., Gardas, R.L.: Volumetric properties of 1-butyl-3-methylimidazolium bromide in aqueous solutions of D(−)-ribose and D(−)-arabinose at different temperature. J. Mol. Liq. 209, 352–357 (2015)

    Article  CAS  Google Scholar 

  42. Dhondge, S.S., Zodape, S.P., Parwate, D.V.: Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures. J. Chem. Thermodyn. 48, 207–212 (2012)

    Article  CAS  Google Scholar 

  43. Cabani, S., Conti, G., Matteoli, E.: Partial molal expansibilities of organic compounds in aqueous solution. I. Alcohols and ethers. J. Solution Chem. 5, 751–763 (1976)

    Article  CAS  Google Scholar 

  44. Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)

    Article  CAS  Google Scholar 

  45. Feakins, D., Freemantle, D.J., Lawrance, K.G.: Transition state treatment of the relative viscosity of electrolytic solutions. Applications to aqueous, non-aqueous and methanol + water systems. J. Chem. Soc. Faraday Trans. 70, 795–806 (1974)

    Article  CAS  Google Scholar 

  46. Marcus, Y.: Viscosity B-coefficients, structural entropies, heat capacity and the effects of ions on the structure of water. J. Solution Chem. 23, 831–848 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajinder K. Bamezai.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, T., Rani, R., Kumar, A. et al. Apparent Molar (Volumetric/Compressibility) and Transport Properties of d-Maltose-1-Butyl-3-methylimidazolium Hexafluorophosphate—Water Ternary Systems at Different Temperatures. J Solution Chem 48, 658–675 (2019). https://doi.org/10.1007/s10953-019-00880-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00880-4

Keywords

Navigation