Skip to main content
Log in

Influence of Kosmotropes and Chaotropes on the Krafft Temperature and Critical Micelle Concentration of Tetradecyltrimethylammonium Bromide in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The study aims to show the effect of some Hofmeister series anions on the Krafft temperature (TK) and the critical micelle concentration (CMC) of tetradecyltrimethylammonium bromide (TTAB) in aqueous solution. The TK of TTAB decreases in the presence of strong kosmotropes and moderate chaotropes but increases in the presence of strong chaotropes. Strong kosmotropes and moderate chaotropes remain hydrated in the bulk phase of the aqueous solution and promote dispersion of the surfactant. On the other hand, strong chaotropes form contact ion pairs with the cationic part of TTAB and exhibit salting out effects showing an increase in TK. The CMC of TTAB decreases in the presence of all ions irrespective of their chaotropic and kosmotropic nature. This can be ascribed to screening of the micelle surface charge by the added counterions. The standard Gibbs energy (\( \Delta G_{\text{m}}^{\text{o}} \)) of micellization was found to be negative, indicating spontaneity of the process. Solubilization of a water-insoluble dye, Sudan II in TTAB micelles, was quantified by the molar solubilization ratio (MSR). The MSR value was found to be higher in the presence of NaCl compared to that in pure water indicating that the added NaCl facilitated solubilization of the dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rosen, M.J.: Surfactants and Interfacial Phenomena, 3rd edn. Wiley, New York (2006)

    Google Scholar 

  2. Srinivasan, V., Blankschtein, D.: Effect of counterion binding on micellar solution behavior: 1. Molecular − thermodynamic theory of micellization of ionic surfactants. Langmuir 19, 9932–9945 (2003)

    Article  CAS  Google Scholar 

  3. Abezgauz, L., Kuperkar, K., Hassan, P.A., Ramon, O., Bahadur, P., Danino, D.: Effect of Hofmeister anions on micellization and micellar growth of the surfactant cetylpyridinium chloride. J. Colloid Interface Sci. 342, 83–92 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. Šarac, B., Bešter-Rogač, M.: Temperature and salt-induced micellization of dodecyltrimethylammonium chloride in aqueous solution: a thermodynamic study. J. Colloid Interface Sci. 338, 216–221 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. Schick, M.J.: Effect of electrolyte and urea on micelle formation1. J. Phys. Chem. 68, 3585–3592 (1964)

    Article  CAS  Google Scholar 

  6. Ropers, M.H., Czichocki, G., Brezesinski, G.: Counterion effect on the thermodynamics of micellization of alkyl sulfates. J. Phys. Chem. B 107, 5281–5288 (2003)

    Article  CAS  Google Scholar 

  7. Nakahara, H., Shibata, O., Moroi, Y.: Examination of surface adsorption of cetyltrimethylammonium bromide and sodium dodecyl sulfate. J. Phys. Chem. B 115, 9077–9086 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. Chatterjee, A., Moulik, S.P., Sanyal, S.K., Mishra, B.K., Puri, P.M.: Thermodynamics of micelle formation of ionic surfactants: A critical assessment for sodium dodecyl sulfate, cetyl pyridinium chloride and dioctyl sulfosuccinate (Na salt) by microcalorimetric, conductometric, and tensiometric measurements. J. Phys. Chem. B 105, 12823–12831 (2001)

    Article  CAS  Google Scholar 

  9. Roy, J.C., Islam, M.N., Aktaruzzaman, G.: The effect of NaCl on the Krafft temperature and related behavior of cetyltrimethylammonium bromide in aqueous solution. J. Surfactant Deterg. 17, 231–242 (2014)

    Article  CAS  Google Scholar 

  10. Islam, M.N., Kato, T.: Thermodynamic study on surface adsorption and micelle formation of poly(ethylene glycol) mono-n-tetradecyl ethers. Langmuir 19, 7201–7205 (2003)

    Article  CAS  Google Scholar 

  11. Islam, M.N., Kato, T.: Dependence of phase behavior of some non-ionic surfactants at the air–water interface on micellization in the bulk. J. Colloid Interface Sci. 252, 365–372 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Sabaté, R., Gallardo, M., de la Maza, A., Estelrich, J.: A spectroscopy study of the interaction of pinacyanol with n-dodecyltrimethylammonium bromide micelles. Langmuir 17, 6433–6437 (2001)

    Article  CAS  Google Scholar 

  13. Fujio, K., Mitsui, T., Kurumizawa, H., Tanaka, Y., Uzu, Y.: Solubilization of a water-insoluble dye in aqueous NaBr solutions of alkylpyridinium bromides and its relation to micellar size and shape. Colloid Polym. Sci. 282, 223–229 (2004)

    Article  CAS  Google Scholar 

  14. Paria, S., Yuet, P.K.: Solubilization of naphthalene by pure and mixed surfactants. Ind. Eng. Chem. Res. 45, 3552–3558 (2006)

    Article  CAS  Google Scholar 

  15. Awan, M.A., Shah, S.S.: Hydrophobic interaction of amphiphilic hemicyanine dyes with cationic and anionic surfactant micelles. Colloids Surf. A 122, 97–101 (1997)

    Article  CAS  Google Scholar 

  16. Tsujii, K., Mino, J.: Krafft point depression of some zwitterionic surfactants by inorganic salts. J. Phys. Chem. 82, 1610–1614 (1978)

    Article  CAS  Google Scholar 

  17. Chu, Z., Feng, Y.: Empirical correlations between Krafft temperature and tail length for amidosulfobetaine surfactants in the presence of inorganic salt. Langmuir 28, 1175–1181 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. Manet, S., Karpichev, Y., Dedovets, D., Oda, R.: Effect of Hofmeister and alkylcarboxylate anionic counterions on the Krafft temperature and melting temperature of cationic gemini surfactants. Langmuir 29, 3518–3526 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. Shinoda, K., Yamaguchi, N., Carlsson, A.: Physical meaning of the Krafft point: observation of melting phenomenon of hydrated solid surfactant at the Krafft point. J. Phys. Chem. 93, 7216–7218 (1989)

    Article  CAS  Google Scholar 

  20. Nakayama, H., Shinoda, K.: The effect of added salts on the solubilities and Krafft points of sodium dodecyl sulfate and potassium perfluoro-octanoate. Bull. Chem. Soc. Jpn 40, 1797–1799 (1967)

    Article  CAS  Google Scholar 

  21. Vautier-Giongo, C., Bales, B.L.: Estimate of the ionization degree of ionic micelles based on Krafft temperature measurements. J. Phys. Chem. B 107, 5398–5403 (2003)

    Article  CAS  Google Scholar 

  22. Bales, B.L., Benrraou, M., Zana, R.: Krafft temperature and micelle ionization of aqueous solutions of cesium dodecyl sulfate. J. Phys. Chem. B 106, 9033–9035 (2002)

    Article  CAS  Google Scholar 

  23. Islam, M.N., Sarker, K.C., Sharker, K.K.: Influence of some Hofmeister anions on the Krafft temperature and micelle formation of cetylpyridinium bromide in aqueous solution. J. Surfactant Deterg. 18, 9–16 (2015)

    Article  CAS  Google Scholar 

  24. Di Michele, A., Brinchi, L., Di Profio, P., Germani, R., Savelli, G., Onori, G.: Effect of head group size, temperature and counterion specificity on cationic micelles. J. Colloid Interface Sci. 358, 160–166 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. Aguiar, J., Molina-Bolı́var, J.A., Peula-Garcı́a, J.M., Carnero Ruiz, C.: Thermodynamics and micellar properties of tetradecyltrimethylammonium bromide in formamide–water mixtures. J. Colloid Interface Sci. 255, 382–390 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. Islam, M.N., Sarker, K.C., Aktaruzzaman, G.: Effect of electrolytes on the Krafft temperature of cetylpyridinium chloride in aqueous solution. J. Surfactant Deterg. 17, 525–530 (2014)

    Article  CAS  Google Scholar 

  27. Islam, M.N., Sharker, K.K., Sarker, K.C.: Salt-induced modulation of the Krafft temperature and critical micelle concentration of benzyldimethylhexadecylammonium chloride. J. Surfactant Deterg. 18, 651–659 (2015)

    Article  CAS  Google Scholar 

  28. Sharma, K.S., Patil, S.R., Rakshit, A.K., Glenn, K., Doiron, M., Palepu, R.M., Hassan, P.A.: Self-aggregation of a cationic − nonionic surfactant mixture in aqueous media: tensiometric, conductometric, density, light scattering, potentiometric, and fluorometric studies. J. Phys. Chem. B 108, 12804–12812 (2004)

    Article  CAS  Google Scholar 

  29. Gurau, M.C., Lim, S.-M., Castellana, E.T., Albertorio, F., Kataoka, S., Cremer, P.S.: On the mechanism of the Hofmeister effect. J. Am. Chem. Soc. 126, 10522–10523 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. Collins, K.D.: Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34, 300–311 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Collins, K.D.: Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion–protein interactions. Biophys. Chem. 167, 43–59 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. Collins, K.D., Neilson, G.W., Enderby, J.E.: Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys. Chem. 128, 95–104 (2007)

    Article  CAS  PubMed  Google Scholar 

  33. Collins, K.D.: Charge density-dependent strength of hydration and biological structure. Biophys. J. 72, 65–76 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lo Nostro, P., Ninham, B.W.: Hofmeister phenomena: an update on ion specificity in Biology. Chem. Rev. 112, 2286–2322 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. Heyda, J., Lund, M., Ončák, M., Slavíček, P., Jungwirth, P.: Reversal of Hofmeister ordering for pairing of NH +4 vs alkylated ammonium cations with halide anions in water. J. Phys. Chem. B 114, 10843–10852 (2010)

    Article  CAS  PubMed  Google Scholar 

  36. Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton (2005)

    Google Scholar 

  37. van Beek, W.M., Mandel, M.: Static relative permittivity of some electrolyte solutions in water and methanol. J. Chem. Soc. Faraday Trans. 1 74, 2339–2351 (1978)

    Article  Google Scholar 

  38. Chen, X., Flores, S.C., Lim, S.-M., Zhang, Y., Yang, T., Kherb, J., Cremer, P.S.: Specific anion effects on water structure adjacent to protein monolayers. Langmuir 26, 16447–16454 (2010)

    Article  CAS  PubMed  Google Scholar 

  39. Lund, M., Vácha, R., Jungwirth, P.: Specific ion binding to macromolecules: effects of hydrophobicity and ion pairing. Langmuir 24, 3387–3391 (2008)

    Article  CAS  PubMed  Google Scholar 

  40. Glasstone, S.: Thermodynamics For Chemists. Narahari Press, New York (2007)

    Google Scholar 

  41. Pegram, L.M., Record, M.T.: Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air − water interface. J. Phys. Chem. B 111, 5411–5417 (2007)

    Article  CAS  PubMed  Google Scholar 

  42. Petersen, P.B., Saykally, R.J.: Adsorption of ions to the surface of dilute electrolyte solutions: the Jones − Ray effect revisited. J. Am. Chem. Soc. 127, 15446–15452 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. Petersen, P.B., Saykally, R.J.: On the nature of ions at the liquid water surface. Annu. Rev. Phys. Chem. 57, 333–364 (2006)

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, Y., Cremer, P.S.: The inverse and direct Hofmeister series for lysozyme. Proc. Natl. Acad. Sci. USA 106, 15249–15253 (2009)

    Article  CAS  PubMed  Google Scholar 

  45. Mata, J., Varade, D., Bahadur, P.: Aggregation behavior of quaternary salt based cationic surfactants. Thermochim. Acta 428, 147–155 (2005)

    Article  CAS  Google Scholar 

  46. Ray, G.B., Chakraborty, I., Ghosh, S., Moulik, S.P., Palepu, R.: Self-aggregation of alkyltrimethylammonium bromides (C10-, C12-, C14-, and C16TAB) and their binary mixtures in aqueous medium: a critical and comprehensive assessment of interfacial behavior and bulk properties with reference to two types of micelle formation. Langmuir 21, 10958–10967 (2005)

    Article  CAS  PubMed  Google Scholar 

  47. Carpena, P., Aguiar, J., Bernaola-Galván, P., Carnero Ruiz, C.: Problems associated with the treatment of conductivity − concentration data in surfactant solutions: simulations and experiments. Langmuir 18, 6054–6058 (2002)

    Article  CAS  Google Scholar 

  48. Zana, R., Yiv, S., Strazielle, C., Lianos, P.: Effect of alcohol on the properties of micellar systems: I. Critical micellization concentration, micelle molecular weight and ionization degree, and solubility of alcohols in micellar solutions. J. Colloid Interface Sci. 80, 208–223 (1981)

    Article  CAS  Google Scholar 

  49. Srinivasan, V., Blankschtein, D.: Effect of counterion binding on micellar solution behavior: 2. Prediction of micellar solution properties of ionic surfactant − electrolyte systems. Langmuir 19, 9946–9961 (2003)

    Article  CAS  Google Scholar 

  50. del Rio, J.M., Pombo, C., Prieto, G., Sarmiento, F., Mosquera, V., Jones, M.N.: n-Alkyltrimethylammonium bromides in a buffered medium: a thermodynamic investigation. J. Chem. Thermodyn. 26, 879–887 (1994)

    Article  Google Scholar 

  51. Mukerjee, P.: The Thermodynamics of micelle formation in association colloids. J. Phys. Chem. 66, 1375–1376 (1962)

    Article  CAS  Google Scholar 

  52. Jiang, N., Li, P., Wang, Y., Wang, J., Yan, H., Thomas, R.K.: Aggregation behavior of hexadecyltrimethylammonium surfactants with various counterions in aqueous solution. J. Colloid Interface Sci. 286, 755–760 (2005)

    Article  CAS  PubMed  Google Scholar 

  53. Prasad, M., Moulik, S.P., MacDonald, A., Palepu, R.: Self-aggregation of alkyl (C10-, C12-, C14-, and C16-) triphenyl phosphonium bromides and their 1:1 molar mixtures in aqueous medium: a thermodynamic study. J. Phys. Chem. B 108, 355–362 (2004)

    Article  CAS  Google Scholar 

  54. Galamba, N.: Water’s structure around hydrophobic solutes and the iceberg model. J. Phys. Chem. B 117, 2153–2159 (2013)

    Article  CAS  PubMed  Google Scholar 

  55. Silvestrelli, P.L.: Are there immobilized water molecules around hydrophobic groups? Aqueous solvation of methanol from first principles. J. Phys. Chem. B 113, 10728–10731 (2009)

    Article  CAS  PubMed  Google Scholar 

  56. Rezus, Y.L.A., Bakker, H.J.: Observation of immobilized water molecules around hydrophobic groups. Phys. Rev. Lett. 99, 148301 (2007)

    Article  CAS  PubMed  Google Scholar 

  57. Bakulin, A.A., Pshenichnikov, M.S., Bakker, H.J., Petersen, C.: Hydrophobic molecules slow down the hydrogen-bond dynamics of water. J. Phys. Chem. A 115, 1821–1829 (2011)

    Article  CAS  PubMed  Google Scholar 

  58. Meister, K., Strazdaite, S., DeVries, A.L., Lotze, S., Olijve, L.L.C., Voets, I.K., Bakker, H.J.: Observation of ice-like water layers at an aqueous protein surface. PNAS 111, 17732–17736 (2014)

    Article  CAS  PubMed  Google Scholar 

  59. Kim, J., Tian, Y., Wu, J.: Thermodynamic and structural evidence for reduced hydrogen bonding among water molecules near small hydrophobic solutes. J. Phys. Chem. B 119, 12108–12116 (2015)

    Article  CAS  PubMed  Google Scholar 

  60. Shah, S.S., Ali Awan, M., Ashraf, M., Idris, S.A.: Solubilization of phenol and benzyl alcohol by cationic and anionic surfactant micelles. Colloids Surf. A 105, 319–323 (1995)

    Article  CAS  Google Scholar 

  61. Schick, M.J., Fowkes, F.M.: Foam stabilizing additives for synthetic detergents. Interaction of additives and detergents in mixed micelles. J. Phys. Chem. 61, 1062–1068 (1957)

    Article  CAS  Google Scholar 

  62. Sabaté, R., Estelrich, J.: Determination of micellar microenvironment of pinacyanol by visible spectroscopy. J. Phys. Chem. B 107, 4137–4142 (2003)

    Article  CAS  Google Scholar 

  63. Harendra, S., Vipulanandan, C.: Effects of surfactants on solubilization of perchloroethylene (PCE) and trichloroethylene (TCE). Ind. Eng. Chem. Res. 50, 5831–5837 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by Bangladesh University of Engineering and Technology (Grant No. CASR 243/67).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Nazrul Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, J.C., Das, S. & Islam, M.N. Influence of Kosmotropes and Chaotropes on the Krafft Temperature and Critical Micelle Concentration of Tetradecyltrimethylammonium Bromide in Aqueous Solution. J Solution Chem 48, 758–773 (2019). https://doi.org/10.1007/s10953-019-00879-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00879-x

Keywords

Navigation