Skip to main content
Log in

Salt-Induced Modulation of the Krafft Temperature and Critical Micelle Concentration of Benzyldimethylhexadecylammonium Chloride

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

In this work, the effect of some sodium salts on the Krafft temperature (T K) and critical micelle concentration (CMC) of benzyldimethylhexadecylammonium chloride (C16Cl) in aqueous solution has been studied. It was observed that the T K can be modulated to lower and higher values and the CMC can be depressed significantly upon the addition of the electrolytes. More chaotropic Br and I raise the T K with an increase of the concentration of the ions. On the other hand, less chaotropic NO3 initially lowers and then raises the T K. Kosmotropic F, SO4 2− and CO3 2− gradually lower the T K with increasing concentration of the electrolytes. The more chaotropic ions form contact ion pairs with the surfactant and decrease the solubility with a consequent increase in the T K. On the other hand, kosmotropic ions, being extensively hydrated in the bulk, remain separated from the surfactant by hydrated layers of water molecules. As a result, a significant electrostatic repulsion exists between the charged headgroups of the surfactant, resulting in a decrease in the T K. The CMC of the surfactant decreases significantly in the presence of these ions. The surface tension at the CMC (γCMC) also decreases in the presence of all the salts except for F. The electrostatic repulsion between the charged headgroups is significantly reduced because of screening of the surface charge of both micelles and adsorbed monolayers by the associated counterions, resulting in a decrease in both the CMC and γCMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Myers D (2004) Surfactant science and technology, 3rd edn. Wiley, New Jersey

    Google Scholar 

  2. Rosen MJ (2006) Surfactants and interfacial phenomena, 3rd edn. Wiley, New York

    Google Scholar 

  3. Schramm LL, Stasiuk EN, Marangoni DG (2003) Surfactants and their applications. Annu Rep Prog Chem Sect C 99:3–48

    Article  CAS  Google Scholar 

  4. Tsuji K, Mino J (1978) Krafft point depression of some zwitterionic surfactants by inorganic salts. J Phys Chem 82:1610–1614

    Article  Google Scholar 

  5. Chu Z, Feng YJ (2012) Empirical correlations between Krafft temperature and tail length for amidosulfobetaine surfactants in the presence of inorganic salt. Langmuir 28:1175–1181

    Article  CAS  Google Scholar 

  6. Carolina V-G, Bales BL (2003) Estimate of the ionization degree of ionic micelles based on Krafft temperature measurements. J Phys Chem B 107:5398–5403

    Article  Google Scholar 

  7. Shinoda K, Yamaguchi N, Carlsson A (1989) Physical meaning of the Krafft point: observation of melting phenomenon of hydrated solid surfactant at the Krafft point. J Phys Chem 93:7216–7218

    Article  CAS  Google Scholar 

  8. Bakshi MS, Sood R (2004) Cationic surfactant–poly(amido amine) dendrimer interactions studied by Krafft temperature measurements. Colloids Surf A 233:203–210

    Article  CAS  Google Scholar 

  9. Nakayama H, Shinoda K (1967) The effect of added salts on the solubilities and Krafft points of sodium dodecyl sulfate and potassium perfluoro-octanoate. Bull Chem Soc Jpn 40:1797–1799

    Article  CAS  Google Scholar 

  10. Shrestha RG, Carlos R-A, Aramaki K (2009) Worm-like micelles in mixed amino acid surfactant/nonionic surfactant aqueous systems and the effect of added electrolytes. J Oleo Sci 58(5):243–254

    Article  CAS  Google Scholar 

  11. Diamant H, Andelman D (1996) Kinetics of surfactant adsorption at fluid-fluid interfaces. J Phys Chem 100:13732–13742

    Article  CAS  Google Scholar 

  12. Iglauer S, Wu Y, Shuler P, Tang Y, Goddard WA (2010) New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. J Petrol Sci Eng 71:23–29

    Article  CAS  Google Scholar 

  13. Vijayan S, Ramachandran C, Shah DO (1981) Effect of salt and aging on surfactant formulation for enhanced oil recovery: a correlation of physical properties with microsctructure using spin-labels. J Am Oil Chem Soc 58:566–573

    Article  CAS  Google Scholar 

  14. Michele AD, Brinchi L, Profio PD, Germani R, Sawelli G, Onori G (2011) Effect of head group size, temperature and counterion specificity on cationic micelles. J Colloid Interf Sci 358:160–166

    Article  Google Scholar 

  15. Mata J, Varade D, Bahadur P (2005) Aggregation behavior of quaternary salt based cationic surfactants. Thermochim Acta 428:147–155

    Article  CAS  Google Scholar 

  16. Bojan S, Marija B-R (2009) Temperature and Salt-Induced micellization of dodecyltrimethylammonium chloride in aqueous solution: a thermodynamic study. J Colloid Interf Sci 338:216–221

    Article  Google Scholar 

  17. Sugihara G, Hisatomi M (1998) Roles of counterion binding in the micelle formation of ionic surfactants in water. J Jpn Oil Chem Soc 47:661–683

    Article  CAS  Google Scholar 

  18. Nakahara H, Shibata O, Moroi Y (2011) Examination of surface adsorption of cetyltrimethylammonium bromide and sodium dodecyl sulfate. J Phys Chem B 115:9077–9086

    Article  CAS  Google Scholar 

  19. Mesa CL, Ranieri GA, Terenzi M (1988) Studies on Krafft point solubility in surfactant solutions. Thermochim Acta 137:143–150

    Article  Google Scholar 

  20. Heckmann K, Schwarz R, Strnad J (1987) Determination of Krafft point and CMC of hexadecylpyridinium salts in electrolytes solutions. J Colloid Interf Sci 120:114–117

    Article  CAS  Google Scholar 

  21. Farias T, de Menorval LC, Zajacb J, Rivera A (2009) Solubilization of drugs by cationic surfactants micelles: conductivity and 1H NMR experiments. Coll Surf A 345:51–57

    Article  CAS  Google Scholar 

  22. Collins KD (2012) Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion–protein interactions. Biophys Chem 167:43–59

    Article  Google Scholar 

  23. Collins KD, Neilson GW, Enderby JE (2007) Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys Chem 128:95–104

    Article  CAS  Google Scholar 

  24. Pegram LM, Record MTJ (2007) Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air-water interface. J Phys Chem 111:5411–5417

    Article  CAS  Google Scholar 

  25. Jarvis NL, Schelman MA (1968) Surface potentials of aqueous electrolyte solutions. J Phys Chem 72:74–78

    Article  CAS  Google Scholar 

  26. Paluch M (2000) Electrical properties of free surface of water and aqueous solutions. Adv Colloid Interf Sci 84:27–45

    Article  CAS  Google Scholar 

  27. Goh MC, Hicks JM, Kemnitz K, Pinto GR, Bhattacharyya K, Eisenthal KB (1988) Absolute orientation of water molecules at the neat water surface. J Phys Chem 92:5074–5075

    Article  CAS  Google Scholar 

  28. Chaplin M (2009) Theory vs experiment: what is the surface charge of water? Water 1:1–28

    Article  Google Scholar 

  29. dos Santos AP, Dieh A, Levin Y (2010) Surface tensions, surface potentials, and the Hofmeister series of electrolyte solutions. Langmuir 13:10778–10783

    Article  Google Scholar 

  30. Zhang Y, Furyk S, Bergbreiter DE, Cremer PS (2005) Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J Am Chem Soc 127:14505–14510

    Article  CAS  Google Scholar 

  31. Heyda J, Lund M, Milan O, Slavicek P, Jungwirth P (2010) Reversal of Hofmeister ordering for pairing of NH4 + vs. alkylated ammonium cations with halide anions in water. J Phys Chem B 114:10843–10852

    Article  CAS  Google Scholar 

  32. Kozlov AG, Lohman TM (1998) Calorimetric studies of E. coli SSB protein-single-stranded DNA interactions. effects of monovalent salts on binding enthalpy. J Mol Biol 278:999–1014

    Article  CAS  Google Scholar 

  33. Lide David R (ed) (2005) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  34. Cheng J, Vecitis CD, Hoffmann MR, Colussi AJ (2006) Experimental anion affinities for the air/water interface. J Phys Chem B 110:25598–25602

    Article  CAS  Google Scholar 

  35. Cho Y, Zhang Y, Christensen T, Sagle LB, Chilkoti A, Cremer PS (2008) Effects of Hofmeister anions on the phase transition temperature of elastin-like polypeptides. J Phys Chem B 112:13765–13771

    Article  CAS  Google Scholar 

  36. Marcus Y (2009) Effect of Ions on the structure of water: structure making and breaking. Chem Rev 109:1346–1370

    Article  CAS  Google Scholar 

  37. Endom L, Hertz HG, Thul B, Zeidler MD (1967) A Microdynamic model of electrolyte solutions as derived from nuclear relaxation and self-diffusion data. Dtsch Bunsenges Phys Chem 71:1008–1031

    CAS  Google Scholar 

  38. Glasstone S (1947) Thermodynamics for Chemists, 3rd edn. Litton Educational Publishing Inc, New York

    Google Scholar 

  39. Islam MN, Sarker KC, Sharker KK (2015) Influence of some Hofmeister anions on the Krafft temperature and micelle formation of cetylpyridinium bromide in aqueous solution. J Surf Deterg 18:9–16

    Article  CAS  Google Scholar 

  40. Islam MN, Sarker KC, Akhtaruzzaman G (2014) Effect of electrolytes on the Krafft temperature of cetylpyridinium chloride in aqueous solution. J Surf Deterg 17:525–530

    Article  Google Scholar 

  41. Chen X, Sarah C, Flores SC, Lim S-M, Zhang Y, Yang T, Kherb J, Cremer PS (2010) Specific anion effects on water structure adjacent to protein monolayers. Langmuir 26:16447–16454

    Article  CAS  Google Scholar 

  42. Rembert KB, Paterova J, Heyda J, Hilty C, Jungwirth P, Cremer PS (2012) Molecular mechanisms of ion-specific effects on proteins. J Am Chem Soc 134:10039–10046

    Article  CAS  Google Scholar 

  43. Srinivasan V, Blankschtein D (2003) Effect of counterion binding on micellar solution behavior: 2. Prediction of micellar solution properties of ionic surfactant-electrolyte systems. Langmuir 19:9946–9961

    Article  CAS  Google Scholar 

  44. Lund M, Vacha R, Jungwirth P (2008) Specific ion binding to macromolecules: effects of hydrophobicity and ion pairing. Langmuir 24:3387–3391

    Article  CAS  Google Scholar 

  45. Nishikido N, Matauura R (1977) The effect of added inorganic salts on the micelle formation of micelle formation in aqueous solution. Bull Chem Soc Jpn 50:1690–1694

    Article  CAS  Google Scholar 

  46. Abezgauz L, Kuperkar K, Hassan PA, Ramon O, Bahadur P, Danino D (2010) Effect of Hofmeister anions on micellization and micellar growth of the surfactant cetylpyridinium chloride. J Colloid Interf Sci 342:83–92

    Article  CAS  Google Scholar 

  47. Salis A, Ninham BW (2014) Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem Soc Rev 43:7358–7377

    Article  CAS  Google Scholar 

  48. Aroti A, Leontidis E, Maltseva E, Brezesinski G (2004) Effects of Hofmeister anions on DPPC Langmuir monolayers at the air-water interface. J Phys Chem B 108:15238–15245

    Article  CAS  Google Scholar 

  49. Hossain MM, Islam MN, Okano T, Kato T (2002) Condensed structure formation in mixed monolayers of anionic surfactants and 2-hydroxyethyl laurate at the air–water interface. Colloids Surf A 205:249–260

    Article  CAS  Google Scholar 

  50. Marcus Y (1991) Thermodynamics of solvation of ions. Part 5. Gibbs free energy of hydration at 298.15 K. J Chem Soc Faraday Trans 87:2995–2999

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MNI is grateful for the financial assistance (CASR-243/67) approved by the Committee for Advanced Studies and Research (CASR), Bangladesh University of Engineering and Technology (BUET), for carrying out the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Nazrul Islam.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazrul Islam, M., Sharker, K.K. & Sarker, K.C. Salt-Induced Modulation of the Krafft Temperature and Critical Micelle Concentration of Benzyldimethylhexadecylammonium Chloride. J Surfact Deterg 18, 651–659 (2015). https://doi.org/10.1007/s11743-015-1696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-015-1696-4

Keywords

Navigation