Skip to main content
Log in

Using the Isopiestic Method to Study Hygroscopic Properties of Soluble Solutes

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Hygroscopic properties of a soluble crystalline solid are determined by the water activity of the saturated solution that is present on the crystal surface of the substance. If the substance contains impurities, then they are also found in the saturated solution and affect the solution’s water activity and, consequently, the hygroscopic properties of the substance. The isopiestic method is used to determine water activities of solutions and, thus, is a universal and accurate technique for examining the hygroscopic properties of substances. This review paper considers the specific requirements for the isopiestic method when used to study the hygroscopicity of substances. Additionally, it provides recommendations with regard to the device and appropriate methods for the processing and presentation of research results. The effect of heterogeneous soluble impurities on the hygroscopic properties of solids was studied. It is demonstrated that isopiestic investigations of concentrated and saturated solutions can be applied to study the hygroscopic properties of pure solids, and to evaluate the effect of impurities on the hygroscopic properties of substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bousfield, W.R.: Iso-piestic solution. Trans. Faraday Soc. 13, 401–413 (1918)

    Article  Google Scholar 

  2. Sinclair, D.A.: A simple method for accurate determinations of vapor pressures of solutions. J. Phys. Chem. 37, 495–504 (1933)

    Article  CAS  Google Scholar 

  3. Robinson, R.A., Sinclair, D.A.: The activity coefficients of the alkali chlorides and of lithium iodide in aqueous solution from vapor pressure measurements. J. Am. Chem. Soc. 56, 1830–1835 (1934)

    Article  CAS  Google Scholar 

  4. Mason, C.M.: The activity and osmotic coefficients of trivalent metal chlorides in aqueous solution from vapor pressure measurements at 25°. J. Am. Chem. Soc. 60, 1638–1647 (1938)

    Article  CAS  Google Scholar 

  5. Scathard, G., Hammer, W.J., Wood, S.E.: Isotonic solutions. I. The chemical potential of water in aqueous solutions of sodium chloride, potassium chloride, sulfuric acid, sucrose, urea and glycerol at 25°. J. Am. Chem. Soc. 60, 3061–3070 (1938)

    Article  Google Scholar 

  6. Kirgintsev, A.N., Trushnikova, L.N.: Isopiestic method for determination of solid phases in ternary systems. Zh. Neorg. Khim. 13, 1146–1148 (1968). (in Russian)

    CAS  Google Scholar 

  7. Platford, R.F.: Isopiestic determination of solubilities in mixed salt solutions. Two salt systems. Am. J. Sci. 272, 959–968 (1972)

    Article  CAS  Google Scholar 

  8. Tereshchenko, A.G.: Using the isopiestic measurement technique to determine solubility of substances (in Russian). In: ONIITEKHim (Cherkassyi, USSR). Tomsk Polytechnic Institute, Tomsk (1980). http://www.lib.tpu.ru/fulltext/m/2011/m24.pdf

  9. Richardson, G.M., Malthus, R.S.: Salts for static control of humidity at relatively low levels. J. Appl. Chem. 5, 557–567 (1955)

    Article  CAS  Google Scholar 

  10. Sundheim, B.R., Waxman, H.H., Gregor, H.P.: Studies of ion exchange resins. VII. Water vapor sorption by cross-linked polystyrene sulfonic acid resins. J. Phys. Chem. 57, 974–978 (1953)

    Article  CAS  Google Scholar 

  11. Kirgintsev, A.N., Lukyanov, A.V.: Water adsorption isotherms for mixed KU-2 resins (in Russian). In: Proceedings Ionites and Ion Exchange, pp. 31–33. Nauka, Moscow (1966)

  12. Tereshchenko, O.V., Tereshchenko, A.G.: Application of isopiestic measurement technique for determination of hygroscopic properties of soluble salts. Zh. Prikl. Khim. 57, 402–404 (1984). (in Russian)

    CAS  Google Scholar 

  13. Pestov, N.V.: Physical and chemical properties of granular and powder chemical products. Akad, Nauk SSSR (1947). (in Russian)

    Google Scholar 

  14. Tereshchenko, A.G.: Hygroscopicity and caking of soluble substances (in Russian). Tomsk Polytechnic University, Tomsk. http://www.lib.tpu.ru/fulltext/m/2011/m18.pdf (2011)

  15. Tereshchenko, A.G.: Deliquescence: hygroscopicity of water-soluble crystalline solids. J. Pharm. Sci. 104, 3639–3652 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. Han, J.: Advances in characterization of pharmaceutical hydrates. Trends Bio/Pharm. Ind. 3, 25–29 (2006)

    Google Scholar 

  17. Lafontaine, A., Sanselme, M., Cartigny, Y., Cardinael, P., Coquerel, G.: Characterization of the transition between the monohydrate and the anhydrous citric acid. J. Therm. Anal. Calorim. 112, 307–315 (2013)

    Article  CAS  Google Scholar 

  18. Sheokand, S., Modi, S.R., Bansal, A.K.: Quantification of low levels of amorphous content in crystalline celecoxib using dynamic vapor sorption (DVS). Eur. J. Pharm. Biopharm. 102, 77–86 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. Williams, D., Burnett, D., Malde, N.: Characterizing amorphous materials with gravimetric vapour sorption techniques. Pharm. Technol. Eur. 21, 41–45 (2009)

    Google Scholar 

  20. Acheson, D.T.: Vapor pressure of saturated aqueous salt solutions Humidity and moisture. In: Oltmans, S.J. (ed.) Measurement and Control in Science and Industry, pp. 521–530. Reinhold Publishing Corp, New York (1965)

    Google Scholar 

  21. Arai, C., Hosaka, S., Murase, K., Sano, Y.: Measurements of the relative humidity of saturated aqueous salt solutions. J. Chem. Eng. Jpn 9, 328–330 (1976)

    Article  CAS  Google Scholar 

  22. Vekker, B.L., Gershkovich, E.A.: Determination of relative humidity above saturated solutions of some salts at temperature range 0–60 °C (in Russian). Scientific Devices 9, 15–21 (1976)

    Google Scholar 

  23. Wexler, A., Hasegawa, S.: Relative humidity–temperature relationships of some saturated salt solutions in the temperature range 0 to 50 °C. J. Res. Nat. Bureau Stand. 53, 19–26 (1954)

    Article  CAS  Google Scholar 

  24. Carotenuto, A., Dell’Isola, M.: An experimental verification of saturated salt solution-based humidity fixed points. Int. J. Thermophys. 17, 1423–1439 (1996)

    Article  CAS  Google Scholar 

  25. Jensen, O.M.: A method for high accuracy determination of equilibrium relative humidity. Sensors Actuators A 181, 13–19 (2012)

    Article  CAS  Google Scholar 

  26. Pestov, N.E., Nikolaeva, N.I.: Hygroscopicity determination methodology. Chem. Ind. 12, 375–377 (1951). (in Russian)

    Google Scholar 

  27. Pestov, N.E.: Some cases of hygroscopicity determination methodology. Chem. Ind. 1, 43–45 (1954). (in Russian)

    Google Scholar 

  28. Kanazava, T.: An improved method for hygroscopicity measurement of fertilizer salts. J. Chem. Soc. Jpn. 68, 619–625 (1965)

    Google Scholar 

  29. Allan, M., Taylor, L.S., Mauer, L.J.: Common-ion effects on the deliquescence lowering of crystalline ingredient blends. Food Chem. 195, 2–10 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. Yu, J., Romeo, M.-C., Cavallaro, A.A., Chan, H.-K.: Protective effect of sodium stearate on the moisture-induced deterioration of hygroscopic spray-dried powders. Int. J. Pharm. 25, 11–18 (2018)

    Google Scholar 

  31. Schmidt, S.J., Lee, J.W.: Comparison between water vapor sorption isotherms obtained using the new dynamic dewpoint isotherm method and those obtained using the standard saturated salt slurry method. Int. J. Food Properties 15, 236–248 (2012)

    Article  Google Scholar 

  32. Allan, M., Mauer, L.J.: Comparison of methods for determining the deliquescence points of single crystalline ingredients and blends. Food Chem. 195, 29–38 (2015)

    Article  CAS  PubMed  Google Scholar 

  33. Penner, E.A., Schmidt, S.J.: Comparison between moisture sorption isotherms obtained using the new vapor sorption analyzer and those obtained using the standard saturated salt slurry method. Food Meas. 7, 185–193 (2013)

    Article  Google Scholar 

  34. Labuza, T.P., Acott, K., Tatini, S.R., Lee, R.Y., Flink, J., McCall, W.: Activity determination: a collaborative study of different methods. J. Food Sci. 41, 910–917 (1976)

    Article  CAS  Google Scholar 

  35. Stokes, R.H., Robinson, R.A.: Standard solutions for humidity control at 25 °C. Ind. Eng. Chem. 41, 2013–2013 (1949)

    Article  CAS  Google Scholar 

  36. Solomon, M.E.: Control of humidity with potassium hydroxide, sulphuric acid, or other solutions. Bull. Entomolog. Res. 42, 543–555 (1951)

    Article  CAS  Google Scholar 

  37. Young, J.F.: Humidity control in the laboratory using salt solutions—a review. J. Appl. Chem. 17, 241–245 (1967)

    Article  CAS  Google Scholar 

  38. Greenspan, L.: Humidity fixed points of binary saturated aqueous solutions. J. Res. Nat. Bur. Stand. 81A, 89–96 (1977)

    Article  Google Scholar 

  39. Busser, T., Berger, J., Piot, A., Pailha, M., Woloszyn, M.: Dynamic experimental method for identification of hygric parameters of a hygroscopic material. Build. Environ. 131, 197–209 (2018)

    Article  Google Scholar 

  40. Argyropoulos, D., Alex, R., Kohler, R., Müller, J.: Moisture sorption isotherms and isosteric heat of sorption of leaves and stems of lemon balm (Melissa officinalis L.) established by dynamic vapor sorption. LWT Food Sci. Tech. 47, 324–331 (2012)

    Article  CAS  Google Scholar 

  41. Thorell, A., Wadso, L.: Determination of external mass transfer coefficients in dynamic sorption (DVS) measurements. Drying Tech. 36, 332–340 (2018)

    Article  CAS  Google Scholar 

  42. https://en.wikipedia.org/wiki/Hygromete

  43. Kirgintsev, A.N.: Essays on the thermodynamics of water–salt systems. Science, Novosibirsk (1976). (in Russian)

    Google Scholar 

  44. Kirgintsev, A.N., Kotlyar-Shapirov, G.S., Timofeev, V.S.: Device for isopiestic. Zh. Phys. Khim. 45, 2931–2932 (1971). (in Russian)

    CAS  Google Scholar 

  45. Tereshchenko, O.V., Tereshchenko, A.G., Shlyafer, I.V., Khlevnoi, I.S., Shved, V.S., Zubitskii, B.D., Kazakov, A.P.: Effect of monomethylamine sulfate addition on the caking tendency of ammonium sulfate. Coke and Chem. 7, 23–26 (1985). (in Russian)

    Google Scholar 

  46. Tereshchenko, O.V., Malutin, S.A., Ovetchenko, L.G., Tereshchenko, A.G., Steklova, I.V.: Hygroscopicity of soda nitrate. Zh. Prikl. Khim. 4, 888–891 (1985). (in Russian)

    Google Scholar 

  47. Tereshchenko, A.G.: Hygroscopic gravimetric analysis method for quality control of soluble solids (in Russian). In: Proceedings of III Congress of Analysts of Russia, 8–13 October 2017. Moscow: GEOKHI RAN. 84–84. http://rusanalytchem.org/car2017/Publications/2017-Abstracts.pdf (2017)

  48. Tereshchenko, A.G.: Application of hygroscopic gravimetric analysis method in isopiestic measurements. Quality control of initial reagents. J. Solution Chem. (2019). https://doi.org/10.1007/s10953-018-0759-3

    Article  Google Scholar 

  49. Tereshchenko, A.G., Tereshchenko, O.V., Malyutin, S.A.: Presentation form for hygroscopicity reference data of soluble substances and chemical products (in Russian). Tomsk, Tomsk Polytechnic University. In: ONIITEHim 16.01.84, 43hp-D84. http://www.lib.tpu.ru/fulltext/m/2013/m12.pdf (1984)

  50. Goldberg, R.N.: Evaluated activity and osmotic coefficients for aqueous solutions: bi-univalent compounds of lead, copper, manganese, and uranium. J. Phys. Chem. Ref. Data 8, 1005–1050 (1979)

    Article  CAS  Google Scholar 

  51. Goldberg, R.N.: Evaluated activity and osmotic coefficients for aqueous solutions: thirty-six uni-bivalent electrolytes. J. Phys. Chem. Ref. Data 10, 671–764 (1981)

    Article  CAS  Google Scholar 

  52. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworths, London (1965)

    Google Scholar 

  53. Mikulin, G.I. (ed.): Issues of Physical Chemistry of Electrolyte Solutions. Nauka, Leningrad (1968). (in Russian)

    Google Scholar 

  54. Tereshchenko, A.G.: To the issue of complete characterization of hygroscopic properties of water-soluble pure solids (in Russian). Tomsk Polytechnic Institute. Tomsk. Dep., in VINITI 4514-76, 24.12.76 (1976)

  55. Zdanovsky, A.B.: Regularities in changing properties of mixed solutions (in Russian). Tr. Solyanoi Lab. Akad. Nauk SSSR, No. 6, 70 p. (1936)

  56. He, M., Rard, J.A.: Revision of the osmotic coefficients, water activities and mean activity coefficients of the aqueous trivalent rare earth chlorides at T = 298.15 K. J. Solution Chem. 44, 2208–2221 (2015)

    Article  CAS  Google Scholar 

  57. Tereshchenko, A.G.: Isopiestic method. Application of saturated solutions of pure substances as water activity reference standards (in Russian). Tomsk Polytechnic University. Deposited in VINITI 07.10.13, 281-V2013. http://www.lib.tpu.ru/fulltext/m/2013/m14.pdf (2013)

Download references

Acknowledgements

The author expresses gratitude to T.A. Fateeva (National Research Tomsk Polytechnic University) for the provided figures, and O.S. Kvashnina (National Research Tomsk Polytechnic University) for the English language support. The research was carried out at Tomsk Polytechnic University within the framework of Tomsk Polytechnic University Competitiveness Enhancement Program Grant, Project Number TPU CEP_IHTP_73\2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly G. Tereshchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshchenko, A.G. Using the Isopiestic Method to Study Hygroscopic Properties of Soluble Solutes. J Solution Chem 48, 379–394 (2019). https://doi.org/10.1007/s10953-018-0840-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0840-y

Keywords

Navigation