Skip to main content
Log in

Determination of the Distribution of Cobalt-Chloro Complexes in Hydrochloric Acid Solutions at 298 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Knowledge of the distribution of metal-chloro complexes in hydrochloric acid solutions is fundamental for understanding the anion-exchange reaction. Anion-exchange separation allows ultrahigh purification during hydrometallurgical processes. However, at present the exchange reactions are not understood in detail. A more sophisticated purification needs improvement of the anion-exchange separation process. The process is based upon anion-exchange reactions and the distribution of metal-chloro complexes. The present work deals with cobalt-chloro complexes which exhibit a beautiful deep blue color in a concentrated hydrochloric acid solution. The intensity of the absorption attributed to the deep blue color is so strong that it is hard to obtain meaningful results by factor analysis. Another absorption band was chosen to be used in factor analysis and the attempt was successful. The number of cobalt-chloro complexes in hydrochloric acid solutions was determined to be three, and the cumulative formation constants were fitted to absorption spectra decomposed by factor analysis. During the optimization of the cumulative formation constants, a modified Debye–Hückel model for estimation of the activity coefficients of \(\hbox {Cl}^{-}\) was used. It was found that there are three cobalt complexes \([\hbox {Co}^{\mathrm{II}}(\hbox {H}_{2}\hbox {O})_{6}]^{2+}\), \([\hbox {Co}^{\mathrm{II}}\hbox {Cl}(\hbox {H}_{2}\hbox {O})_{5}]^{+}\), and \([\hbox {Co}^{\mathrm{II}}\hbox {Cl}_{4}]^{2-}\), and the two cumulative formation constants were optimized such that \(\log _{10}\beta _{1} = -\,0.861\) and \(\log _{10}\beta _{4} = -\,7.40\). The geometries of the complexes are proposed by assignment of absorption bands using ligand field theory. A qualitative assessment of the relationship between the acquired distribution of cobalt-chloro complexes and the adsorption function of cobalt species from hydrochloric acid solutions to anion-exchange resin was made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(a_{\lambda }\) :

Absorbance at \(\lambda \) nm

\(\lambda \) :

Wavelength

\(l_{\text {path}}\) :

Path length in solution sample.

\(M_{i}\) :

Molarity of the subscripted species

\(\varepsilon _{i, \lambda }\) :

Molar attenuation coefficient of the subscripted species at \(\lambda \) nm

\({\mathbf {A}}\) :

Matrix of the total absorbance

\({\mathbf {C}}\) :

Matrix of the concentration profiles of species

\({\mathbf {E}}\) :

Matrix of the molar attenuation coefficients of species

\({\textit{RE}}\) :

Malinowski’s residual error function

\(\sigma \) :

Singular values of the concerned matrix

s :

Number of the singular values of the concerned matrix

\(m_{\text {row}}\) :

Number of rows in the concerned matrix

\(n_{\text {column}}\) :

Number of columns in the concerned matrix

n :

Coordination number

\(\beta _{n}\) :

Cumulative formation constants.

a :

Activity

\(\gamma \) :

Activity coefficient

m :

Molality of aqueous species

z :

Charge of aqueous species

\(\displaystyle {\bar{I} = \frac{1}{2}\sum _{i}m_{i}z_{i}}\) :

Effective ionic strength

\(m^{*}\) :

Sum of molalities of all solute species

\(\Gamma _{\gamma }\) :

Conversion factor from a mole fraction to molality

b :

Interaction parameters for salt

\({\mathring{a}}_{k}\) :

Distance of the closest approach for aqueous species k

\(\displaystyle {A_{\gamma } = \dfrac{e^{3}\sqrt{2\pi {}{\mathrm {N}}_{\mathrm {A}}\rho _{\mathrm{H}_{2}{\mathrm{O}}}}}{(\ln {}10)\sqrt{1000}\left( \varepsilon _{\mathrm{H}_{2}{\mathrm{O}}}{\mathrm {k}}T\right) ^{3/2}}}\) :

The Debye–Hückel limiting slope parameter

\(\displaystyle {B_{\gamma } = \sqrt{\dfrac{8\pi {}{\mathrm {N}}_{\mathrm {A}}\rho _{\mathrm{H}_{2}{\mathrm{O}}}e^{2}}{1000\varepsilon _{\mathrm{H}_{2}{\mathrm{O}}}{\mathrm {k}}T}}}\) :

The Debye–Hückel solvent parameter

\({\mathrm {N}}_{\mathrm {A}}\) :

The Avogadro constant

e :

The absolute electronic charge

\(\rho _{\mathrm{H}_{2}{\mathrm{O}}}\) :

Density of \(\hbox {H}_{2}\hbox {O}\)

\(\varepsilon _{\mathrm{H}_{2}{\mathrm{O}}}\) :

Dielectric constant of \(\hbox {H}_{2}\hbox {O}\)

\({\mathrm {k}}\) :

The Boltzmann constant

T :

The absolute temperature

References

  1. Swinburne, T.D., Arakawa, K., Mori, H., Yasuda, H., Isshiki, M., Mimura, K., Uchikoshi, M., Dudarev, S.L.: Fast, vacancy-free climb of prismatic dislocation loops in BCC metals. Sci. Rep. 6, 30596 (2016)

    Article  CAS  Google Scholar 

  2. Arakawa, K., Ono, K., Isshiki, M., Mimura, K., Uchikoshi, M., Mori, H.: Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science 318, 956–959 (2007)

    Article  CAS  Google Scholar 

  3. Fukuyama, H., Morohoshi, K., Uchikoshi, M., Isshiki, M.: Dynamic surface tension behavior of liquid iron during carburization and decarburization processes. ISIJ Int. 54, 2109–2114 (2014)

    Article  CAS  Google Scholar 

  4. Kitahara, T., Tanada, K., Ueno, S., Sugioka, K., Kubo, M., Tsukada, T., Uchikoshi, M., Fukuyama, H.: Effect of static magnetic field on recalescence and surface velocity field in electromagnetically levitated molten CuCo droplet in undercooled state. Metall. Mater. Trans. B 46, 2706–2712 (2015)

    Article  CAS  Google Scholar 

  5. Bost, M., Mahan, J.: Optical properties of semiconducting iron disilicide thin films. J. Appl. Phys. 58, 2696–2703 (1985)

    Article  CAS  Google Scholar 

  6. Gotoh, K., Suzuki, H., Udono, H., Kikuma, I., Esaka, F., Uchikoshi, M., Isshiki, M.: Single crystalline \(\beta \)-\({\text{ FeSi}}_{2}\) grown using high-purity \({\text{ FeSi}}_{2}\) source. Thin Solid Films 515, 8263–8267 (2007)

    Article  CAS  Google Scholar 

  7. Maeda, Y. (ed.): Science and Technology of Semiconducting Silicides and Related Materials. Shokabo Co., Ltd. (2014)

  8. Kékesi, T., Uchikoshi, M., Mimura, K., Isshiki, M.: Anion-exchange separation in hydrochloric acid solutions for the ultrahigh purification of cobalt. Metall. Mater. Trans. B 32, 573–582 (2001)

    Article  Google Scholar 

  9. Uchikoshi, M., Shibuya, H., Kékesi, T., Mimura, K., Isshiki, M.: Mass production of high-purity iron using anion-exchange separation and plasma arc melting. Metall. Mater. Trans. B 40, 615–618 (2009)

    Article  Google Scholar 

  10. Mimura, K., Saito, K., Isshiki, M.: Removal of oxygen and nitrogen from iron and cobalt by hydrogen-argon plasma arc melting. J. Jpn. Inst. Met. 63, 1181–1190 (1999)

    Article  CAS  Google Scholar 

  11. Uchikoshi, M., Imai, K., Mimura, K., Isshiki, M.: Oxidation refining of iron using plasma-arc melting. J. Mater. Sci. 43, 5430–5435 (2008)

    Article  CAS  Google Scholar 

  12. Kraus, K., Nelson, F.: Anion exchange studies of the fission products. In: Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, Geneve, pp. 113–125 (1955)

  13. Kékesi, T., Isshiki, M.: Anion-exchange behavior of copper and some metallic impurities in \({\text{ HCl}}\) solutions. Mater. Trans. JIM 35, 406–413 (1994)

    Article  Google Scholar 

  14. Isshiki, M., Mimura, K., Uchikoshi, M.: Preparation of high purity metals for advanced devices. Thin Solid Films 519, 8451–8455 (2011)

    Article  CAS  Google Scholar 

  15. Uchikoshi, M., Shibuya, H., Imaizumi, J., Kékesi, T., Mimura, K., Isshiki, M.: Preparation of high-purity cobalt by anion-exchange separation and plasma arc melting. Metall. Mater. Trans. B 41, 448–455 (2010)

    Article  Google Scholar 

  16. Uchikoshi, M., Nagahara, T., Lim, J.-W., Kim, S.-B., Mimura, K.: Anion-exchange behavior of Mo(V) and W(VI) in HCl solutions. High Temp. Mater. Process. 30, 345 (2011)

    Article  CAS  Google Scholar 

  17. Dorfner, K. (ed.): Ion Exchangers. Walter de Guyter, Boston (1991)

    Google Scholar 

  18. Sillén, L., Martell, A. (eds.): Stability Constants of Metal-Ion Complexes Section I: Inorganic Ligands, vol. 25, 2nd edn. The Chemical Society, Burlington House, London (1966)

  19. Zeltmann, A., Matwiyoff, N., Morgan, L.: Nuclear magnetic resonance of oxygen-17 and chlorine-35 in aqueous hydrochloric acid solutions of cobalt(II). I. Line shifts and relative abundances of solution species. J. Phys. Chem. 72, 121–127 (1968)

    Article  CAS  Google Scholar 

  20. Bjerrum, J., Halonin, A., Skibsted, L.: Studies on cobalt(II) halide complex-formation. 1. Spectrophotometric study of chloro cobalt(II) complexes in strong aqueous chloride solutions. Acta. Chem. Scand. A 29, 326–332 (1975)

    Article  Google Scholar 

  21. Skibsted, L., Bjerrum, J.: Studies on cobalt(II)halide complex-formation. 2. Cobalt(II) chloride complexes in 10 M perchloric acid-solution. Acta. Chem. Scand. A 32, 429–434 (1978)

    Article  Google Scholar 

  22. Pan, P., Susak, N.J.: Co(II)-chloride and Co(II)-bromide complexes in aqueous-solutions up yo 5 M NaX and \(90\,^{\circ }{\text{C}}\)—spectrophotometric study and geological implications. Geochim. Cosmochim. Acta 53, 327–341 (1989)

    Article  CAS  Google Scholar 

  23. Liu, W., Borg, S.J., Testemale, D., Etschmann, B., Hazemann, J.-L., Brugger, J.: Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at \(35-440\,^{\circ }{\text{C }}\) and 600 bar: An in-situ XAS study. Geochim. Cosmochim. Acta 75, 1227–1248 (2011)

    Article  CAS  Google Scholar 

  24. Abragam, A., Pryce, M.: The theory of paramagnetic resonance in hydrated cobalt salts. Proc. R. Soci. A 206, 173–191 (1951)

    Article  CAS  Google Scholar 

  25. Holmes, O., McClure, D.: Optical spectra of hydrated ions of the transition metals. J. Chem. Phys. 26, 1686–1694 (1957)

    Article  CAS  Google Scholar 

  26. Liehr, A., Ballhausen, C.: Inherent configurational instability of octahedral inorganic complexes in Eg electronic states. Ann. Phys. 3, 304–319 (1958)

    Article  CAS  Google Scholar 

  27. Cotton, F., Goodgame, D., Goodgame, M.: The electronic structures of tetrahedral cobalt(II) complexes. J. Am. Chem. Soc. 83, 4690–4699 (1961)

    Article  CAS  Google Scholar 

  28. Wiesner, J., Srivastava, R., Kennard, C., Di Vaira, M., Lingafelter, E.: The crystal structures of tetramethylammonium tetrachloro-cobaltate(II), -nickelate(II), and -zincate(II). Acta Crystallogr. 23, 1–10 (1967)

    Article  Google Scholar 

  29. Waizumi, K., Masuda, H., Ohtaki, H., Tsukamoto, K., Sunagawa, I.: In situ observations of the phase transition among cobalt(II)dichloride hydrates and crystal structures of the tetra- and hexahydrates. Bull. Chem. Soc. Jpn. 63, 3426–3433 (1990)

    Article  CAS  Google Scholar 

  30. Ballhausen, C.J., Jørgensen, C.K.: Studies of absorption spectra. IX. The spectra of cobalt(II) complexes. Acta Chem. Scand. 9, 397–404 (1955)

    Article  CAS  Google Scholar 

  31. Ballhausen, C., Liehr, A.: Intensities in inorganic complexes. Part II. Tetrahedral complexes. J. Mol. Spectrosc. 2, 342–360 (1958)

    Article  CAS  Google Scholar 

  32. Crerar, D.: A method for computing multicomponent chemical equilibria based on equilibrium constants. Geochim. Cosmochim. Acta 39, 1375–1384 (1975)

    Article  CAS  Google Scholar 

  33. Seward, T.: The formation of lead(II) chloride complexes to \(300\,^{\circ }{\text{ C }}\): A spectrophotometric study. Geochim. Cosmochim. Acta 48, 121–134 (1984)

    Article  CAS  Google Scholar 

  34. Gammons, C., Seward, T.: Stability of manganese(II) chloride complexes from \(25\,^{\circ }{\text{ C }}\) to \(300\,^{\circ }{\text{ C }}\). Geochim. Cosmochim. Acta 60, 4295–4311 (1996)

    Article  CAS  Google Scholar 

  35. Brugger, J., McPhail, D., Black, J., Spiccia, L.: Complexation of metal ions in brines: application of electronic spectroscopy in the study of the Cu(II)–LiCl–\({\text{ H }}_{2}{\text{ O }}\) system between \(25\,^{\circ }{\text{ C }}\) and \(90\,^{\circ }{\text{ C }}\). Geochim. Cosmochim. Acta 65, 2691–2708 (2001)

    Article  CAS  Google Scholar 

  36. Brugger, J.: BeerOz, a set of Matlab routines for the quantitative interpretation of spectrophotometric measurements of metal speciation in solution. Comput. Geosci. 33, 248–261 (2007)

    Article  Google Scholar 

  37. Anderson, G., Crerar, D.: Thermodynamics in Geochemistry. The Equilibrium Model. Oxford University Press, Oxford (1993)

    Google Scholar 

  38. Gemperline, P. (ed.): Practical Guide to Chemometrics, 2nd edn. Taylor & Francis Group, Boca Raton (2006)

  39. Uchikoshi, M.: Determination of thedistribution of cupric-chloro complexes in hydrochloric acid solutions at 298 K. J. Solution Chem. 46, 704–719 (2017)

    Article  CAS  Google Scholar 

  40. Malinowski, E., Howery, D.: Factor Analysis in Chemistry, 3rd edn. Wiley, New York (1980)

    Google Scholar 

  41. de Juan, A., VanderHeyden, Y., Tauler, R., Massart, D.: Assessment of new constraints applied to the alternating least squares method. Anal. Chim. Acta 346, 307–318 (1997)

    Article  Google Scholar 

  42. Maeder, M.: Evolving factor analysis for the resolution of overlapping chromatographic peaks. Anal. Chem. 59, 527–530 (1987)

    Article  CAS  Google Scholar 

  43. Howell, O., Jackson, A.: The change in the absorption spectrum of cobalt chloride in aqueous solution with increasing concentration of hydrochloric acid. Proc. R. Soci. A 142, 587–597 (1933)

    Article  CAS  Google Scholar 

  44. Partanen, J., Juusola, P., Vahteristo, K., de Mendonca, A.: Re-evaluation of the activity coefficients of aqueous hydrochloric acid solutions up to a molality of \(16.0\,{\text{ mol}}\,\text{ kg }^{-1}\) using the Hückel and Pitzer equations at temperatures from \(0\,^{\circ } {\text{C }}\) to \(50\,^{\circ }{\text{C }}\). J. Solution Chem. 36, 39–59 (2007)

    Article  CAS  Google Scholar 

  45. Setchénow, M.: Über die konstitution der salzlösungen auf grund ihres verhaltens zu kohlensäure. Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys. 4, 117–126 (1889)

    Google Scholar 

  46. Figgis, B.: Introduction to Ligand Fields. lnterscicnce Publishers, New York (1966)

    Google Scholar 

  47. Susak, N.J., Crerar, D.A.: Spectra and coordination changes of transition-metals in hydrothermal solutions—implications for ore genesis. Geochim. Cosmochim. Acta 49, 555–564 (1985)

    Article  CAS  Google Scholar 

  48. Berendsen, H.: A Student’s Guide to Data and Error Analysis. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  49. Smithson, J., Williams, R.: A possible differentiation between ion-pairs and complexes. J. Chem. Soc. 457–462 (1958)

  50. Allen, P., Bucher, J., Shuh, D., Edelstein, N., Reich, T.: Investigation of aquo and chloro complexes of \({\text{ UO}}_{2}^{2+}\), \({\text{ NpO}}_{2}^{+}\), \({\text{ Np}}^{4+}\), and \({\text{ Pu }}^{3+}\) by X-ray absorption fine structure spectroscopy. Inorg. Chem. 36, 4676–4683 (1997)

    Article  CAS  Google Scholar 

  51. Ikeda, A., Yaita, T., Okamoto, Y., Shiwaku, H., Suzuki, S., Suzuki, T., Fujii, Y.: Extended X-ray absorption fine structure investigation of adsorption and separation phenomena of metal ions in organic resin. Anal. Chem. 79, 8016–8023 (2007)

    Article  CAS  Google Scholar 

  52. Kékesi, T., Mimura, K., Isshiki, M.: Ultra-high purification of iron by anion exchange in hydrochloric acid solutions. Hydrometallurgy 63, 1–13 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Mr. Yuji Baba for his devotion to the experiments. This research was carried out as one of the projects of the Materiasls Science & Technology (MSTeC) Research Center at the Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Uchikoshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchikoshi, M. Determination of the Distribution of Cobalt-Chloro Complexes in Hydrochloric Acid Solutions at 298 K. J Solution Chem 47, 2021–2038 (2018). https://doi.org/10.1007/s10953-018-0831-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0831-z

Keywords

Navigation