Skip to main content
Log in

Physico-chemical Properties of the Molten CuCl–CuCl2 System: Experiment, Thermodynamics and Molecular Dynamics Simulations

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The molten CuCl–CuCl2 system was studied by means of the maximum bubble pressure method, thermodynamics and molecular dynamics simulations at temperatures of 835, 866, 905 and 943 K. The equilibrium constant of CuCl2 decomposition has been determined with thermodynamic simulation. The density and molar volume of the CuCl–CuCl2 system were established as a function of composition. Some evidence of ideality of CuCl–CuCl2 solutions was observed. The molar volumes of pure liquid CuCl2 are equal to 44.64, 46.23, 46.55 and 46.81 cm3·mol−1 at 835, 866, 905 and 943 K, correspondingly. Radial distribution functions, coordination numbers, self-diffusion coefficients and trajectories of motion were obtained by molecular dynamics simulation. For this reason a new pair potential for Cu2+–Cl pair has been designed. The coordination number of Cu2+ by Cl is about 4. This value corresponds to literature data with regards to this coordination. The self-diffusion coefficients are close to diffusion coefficients measured in molten salts solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Anfinogenov, A.I., Martem’yanova, Z.S.: Spontaneous mass transfer and deposition of carbon and silicon on titanium in LiCl–Li ionic–electronic melts. J. Min. Metall. 39, 295–301 (2003)

    Article  CAS  Google Scholar 

  2. Anfinogenov, A.I., Chebykin, V.V., Chernov, Y.B.: Spontaneous electrochemical transport reactions in ionic and ionic–electronic salt melts: the production of diffusion coatings. Russ. J. Electrochem. 43, 968–976 (2007)

    Article  CAS  Google Scholar 

  3. Daněk, V., Ličko, T., Pánek, Z.: Conductivity of melts in the system CaO–FeO–Fe2O3–SiO2. Chem. Pap. 40, 215–223 (1986)

    Google Scholar 

  4. Bredig, M.A.: Molten Salt Chemistry. Interscience, New York (1964)

    Google Scholar 

  5. Heus, R.J., Egan, J.J.: Electronic conductivity in molten lithium chloride–potassium chloride eutectic. J. Phys. Chem. 77, 1989–1993 (1973)

    Article  CAS  Google Scholar 

  6. Egan, J.J., Freyland, W.: Thermodynamic properties of liquid non metallic Na–NaBr solutions. Ber. Bunsenges. Phys. Chem. 89, 381–384 (1985)

    Article  CAS  Google Scholar 

  7. Nattland, D., Heyer, H., Freyland, W.: Metal–nonmetal transition in liquid alkali metal–alkalihalide melts: electrical conductivity and optical reflectivity study. Z. Phys. Chem. N. F. 149, 1–15 (1986)

    Article  CAS  Google Scholar 

  8. Liu, J., Poignet, J.-C.: Electronic conductivity of salt-rich Li–LiCl melts. J. Appl. Electrochem. 22, 1110–1112 (1992)

    Article  CAS  Google Scholar 

  9. Nattland, D., Von Blanckenhagen, B., Juchem, R., Schellkes, E., Freyland, W.: Localized and mobile electrons in metal–molten-salt solutions. J. Phys. 8, 9309–9314 (1996)

    CAS  Google Scholar 

  10. Warren, W.W., Sotier, S., Brennert, G.F.: Resolution of the conductivity dilemma in liquid solutions of alkali metals in alkali halides. Phys. Rev. Lett. 50, 1505–1508 (1983)

    Article  CAS  Google Scholar 

  11. Budimirov, M.A., Red’kin, A.A., Hohlov, V.A., Batalov, N.N.: Fiziko-himicheskie issledovaniya rasplavlennich smesey (LiCl–KCl)evt–CuCl–CuCl2 (in Russian). Rasplavy. 3, 47–53 (1993)

    Google Scholar 

  12. Shevelin, P.Yu., Molchanova, N.G., Yolshin, A.N., Batalov, N.N.: Electron transfer in an electron-ion molten mixture of CuCl–CuCl2–MeCl (Me = Li, Na, K, Cs). Electrochim. Acta 48, 1385–1394 (2003)

    Article  CAS  Google Scholar 

  13. Saluev, A.B., Redkin, A.A., Hohlov, V.A.: Electroprovodnost rasplavov sistemy CsCl–CeCl3–Cl2 pri razlichnich davleniyah hlora (in Russian). Rasplavy. 4, 66–72 (1999)

    Google Scholar 

  14. Zinchenko, V.F., Shapovalov, A.V., Sadovskaya, L.V.: Ionno-elektronnaya provodimost rasplavov slozhnih halkogenidov evropiya (II) (in Russian). Rasplavy. 2, 78–80 (1997)

    Google Scholar 

  15. Elshin, A.N., Shevelin, P.Yu., Molchanova, N.G., Batalov, N.N., Red’kin, A.A.: Electron transfer in the CuCl–CuCl2–LiCl melt. Russ. J. Electrochem. 33, 1299–1305 (1997)

    CAS  Google Scholar 

  16. Shevelin, P.Yu., Raskovalov, A.A., Molchanova, N.G.: An electron transfer in CuCl–CuCl2 melt at different Cl2 partial pressures. Ionics 23, 3163–3168 (2017)

    Article  CAS  Google Scholar 

  17. Smirnov, M.V., Stepanov, V.P.: Density and surface tension of molten alkali halides and their binary mixtures. Electrochim. Acta 27, 1551–1563 (1982)

    Article  CAS  Google Scholar 

  18. Janz, G.J., Tomkins, R.P.T., Allen, C.B., Downey Jr., J.R., Garner, G.L., Krebs, U., Singer, S.K.: Molten salts: volume 4, part 2, chlorides and mixtures, electrical conductance, density, viscosity, and surface tension data. J. Phys. Chem. Ref. Data 4, 871–1178 (1975)

    Article  CAS  Google Scholar 

  19. Sinyarev, G.B., Trusov, B.G., Slynko, L.E.: A universal program for determination of the composition of multicomponent working bodies and calculation of some thermal processes, in: Proceedings of the MVTU, No. 159, MVTU, Moscow (1973)

  20. Glushko, V.P., Gurvich, L.V., Bergman, G.A., Veits, I.V., Medvedev, V.A., Khachkuruzov, G.A., Yungman, V.S.: Thermodinamicheskie Svoitsva Individual’nykh. Veshchestv, vol. I–IV. Science, Moscow (1978–1982)

  21. Smith, W., Forester, T.: The DL_POLY Project. TCS Division, Daresbury Laboratory, Daresbury, Warrington WA4 4AD

  22. Stafford, A.J., Silbert, M., Trullas, J., Giro, A.: Potentials and correlation functions for the copper halide and silver iodide melts: I. Static correlations. J. Phys. 2, 6631–6641 (1990)

    CAS  Google Scholar 

  23. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  24. Andreev, O.L., Raskovalov, A.A., Larin, A.V.: A molecular dynamics simulation of lithium fluoride: volume phase and nanosized particle. Russ. J. Phys. Chem. 84, 48–52 (2010)

    Article  CAS  Google Scholar 

  25. Ezhov,Y.S., Gusarov, A.V.: Copper dichloride. Chemical Department of Moscow State University. http://www.chem.msu.su/Zn/Cu/CuCl2.html (2006); accessed 19 January 2006

  26. Ruthven, J.D.M., Kenney, C.N.: Equilibrium chlorine pressures over cupric chloride melts. J. Inorg. Nucl. Chem. 30, 931–944 (1968)

    Article  CAS  Google Scholar 

  27. Lurie, YuYu.: Spravochnik po analiticheskoy himii. Chemistry, Moscow (1971)

    Google Scholar 

  28. Giazitzoglou, Z.: Redox electromotive force measurments in the molten CuCl–CuCl2 system and thermodynamics properties of liquid CuCl2. J. Chem. Eng. Data 29, 3–5 (1984)

    Article  CAS  Google Scholar 

  29. Eisenberg, S., Jal, J.-F., Dupuy, J., Chieux, P., Knoll, W.: Neutron diffraction determination of the partial structure factors of molten CuCl. Phil. Mag. A 46, 195–209 (1982)

    Article  CAS  Google Scholar 

  30. Alcaraz, O., Trullàs, J., Tahara, S., Kawakita, Y., Takeda, S.: The structure of molten CuCl: reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model. J. Chem. Phys. 145, 094503 (2016). https://doi.org/10.1063/1.4962181

    Article  CAS  PubMed  Google Scholar 

  31. Kolmel, Ch., Ahlrichs, R.: An ab initio investigation of copper complexes with supershort copper-copper distances. J. Phys. Chem. 94, 5536–5542 (1990)

    Article  Google Scholar 

  32. Zhao, H., Chang, J., Boika, A., Bard, A.J.: Electrochemistry of high concentration copper chloride complexes. Anal. Chem. 85, 7696–7703 (2013)

    Article  CAS  Google Scholar 

  33. Liu, W., Brugger, J., McPhail, D.C., Spiccia, L.: A spectrophotometric study of aqueous copper(I)–chloride complexes in LiCl solutions between 100 °C and 250 °C. Geochim. Cosmochim. Acta 66, 3615–3633 (2002)

    Article  CAS  Google Scholar 

  34. Elshin, A.N., Budimirov, M.A., Zakharov, V.V., Batalov, N.N.: Koefficienty diffuzii Cu+ i Cu2+ v legkoplavkikh smesyakh galogenidov shelochnykh metallov (in Russian). Rasplavy. 3, 120–123 (1989)

    Google Scholar 

Download references

Acknowledgements

The reported study was funded by Russian Foundation for Basic Research (RFBR), according to the research Project No. 16-33-60095 mol_a_dk. The calculations were performed using “Uran” supercomputer of IMM UB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Raskovalov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raskovalov, A.A., Shevelin, P.Y. Physico-chemical Properties of the Molten CuCl–CuCl2 System: Experiment, Thermodynamics and Molecular Dynamics Simulations. J Solution Chem 47, 1779–1793 (2018). https://doi.org/10.1007/s10953-018-0817-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0817-x

Keywords

Navigation