Skip to main content
Log in

Isopiestic Determination of the Osmotic and Activity Coefficients of the {hH2SO4 + (1 − h)Al2(SO4)3}(aq) System at T = 298.15 K. 1. Experimental Results at Stoichiometric Ionic Molality Factions h = (0.85777, 0.71534, 0.57337, 0.42985, 0.28593, and 0.14332)

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Isopiestic vapor-pressure measurements have been made at 166 compositions of the {hH2SO4 + (1 − h)Al2(SO4)3}(aq) system at the temperature 298.15 K using H2SO4(aq) as the isopiestic reference standard, where h is the stoichiometric ionic molality fraction of H2SO4 in the mixtures that was calculated by assuming complete dissociation of both solutes. These experiments were performed up to the crystallization limits at values of h = (0.85777, 0.71534, 0.57337, 0.42985, 0.28593, and 0.14332) corresponding approximately to h = (6/7, 5/7, 4/7, 3/7, 2/7 and 1/7); the highest achieved molalities are very slightly above or close to the solubility limits because of the very limited tendency of Al2(SO4)3 to form supersaturated solutions when concentrated isothermally at 298.15 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McArthur, J.M., Turner, J.V., Lyons, W.B., Osborn, A.O., Thirlwall, M.F.: Hydrochemistry on the Yilgarn Block, Western Australia: ferrolysis and mineralisation in acidic brines. Geochim. Cosmochim. Acta 55, 1273–1288 (1991)

    Article  CAS  Google Scholar 

  2. Nordstrom, D.K., Alpers, C.N., Ptacek, C.J., Blowes, D.W.: Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ. Sci. Technol. 34, 254–258 (2000)

    Article  CAS  Google Scholar 

  3. Benison, K.C., Goldstein, R.H., Wopenka, B., Burruss, R.C., Pasteris, J.D.: Extremely acid Permian lakes and ground waters in North America. Nature 392, 911–914 (1998)

    Article  CAS  Google Scholar 

  4. Delmelle, P., Bernard, A.: Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia. Geochim. Cosmochim. Acta 58, 2445–2460 (1994)

    Article  CAS  Google Scholar 

  5. Christov, C., Dickson, A.G., Møller, N.: Thermodynamic modeling of aqueous aluminum chemistry and solid–liquid equilibria to high solution concentration and temperature. I. The acidic H-Al–Na–K–Cl–H2O system from 0 to 100 °C. J. Solution Chem. 36, 1495–1523 (2007)

    Article  CAS  Google Scholar 

  6. Vasquez Martinez, O.C.: Effects of Acid Mine Drainage on the Release of Aluminum from Clay Minerals. PhD Dissertation, University of Pittsburgh (2011)

  7. Michimoto, T., Awakura, Y., Majima, H.: Isopiestic determination of the activity of water in aqueous sulfuric acid–sulfate systems. Denki Kagaku 51, 373–380 (1983)

    CAS  Google Scholar 

  8. Majima, H., Awakura, Y.: Water and solute activities of H2SO4–Fe2(SO4)3-H2O and HCl–FeCl3–H2O solution systems: Part II. Activities of solutes. Metall. Trans. B 17B, 621–627 (1986)

    Article  CAS  Google Scholar 

  9. Yamauchi, C., Sakao, H.: Determination of water and solute activities in H2SO4–In2(SO4)3–H2O system. Trans. Jpn. Inst. Met. 28, 327–335 (1987)

    Article  CAS  Google Scholar 

  10. Majima, H., Awakura, Y., Kawasaki, Y.: Activities of Water and Solutes in the Aqueous Solution Systems H2SO4–Mx(SO4)y and HCl–MClx. Agne Shofu Publishing Inc., Tokyo (1988)

    Google Scholar 

  11. Yamauchi, C., Fujisawa, T., Sakao, H.: Thermodynamic properties of Ga2(SO4)3–H2SO4–H2O solution system. Trans. Jpn. Inst. Met. 29, 150–159 (1988)

    Article  Google Scholar 

  12. Awakura, Y., Park, S.-K., Majima, H.: Activities of water and solutes in the solution system H2SO4–Cr2(SO4)3–H2O. Metall. Trans. B 20B, 763–771 (1989)

    Article  CAS  Google Scholar 

  13. Rard, J.A.: Isopiestic determination of the osmotic and activity coefficients of {(1 − y)H2SO4 + yNa2SO4}(aq) at 298.15 K. I. Results for y = 0.5 (NaHSO4) and y = 0.55595, 0.70189, and 0.84920. J. Chem. Thermodyn. 21, 539–560 (1989)

    Article  CAS  Google Scholar 

  14. Rard, J.A.: Isopiestic determination of the osmotic and activity coefficients of {(1 − y)H2SO4 + yNa2SO4}(aq) at the temperature 298.15 K. II. Results for y = (0.12471, 0.24962, and 0.37439). J. Chem. Thermodyn. 24, 45–66 (1992)

    Article  CAS  Google Scholar 

  15. Hovey, J.K., Pitzer, K.S., Rard, J.A.: Thermodynamics of Na2SO4(aq) at temperatures T from 273 to 373 K and of {(1 − y)H2SO4 + yNa2SO4}(aq) at T = 298.15 K. J. Chem. Thermodyn. 25, 173–192 (1993)

    Article  CAS  Google Scholar 

  16. Clegg, S.L., Milioto, S., Palmer, D.A.: Osmotic and activity coefficients of aqueous (NH4)2SO4 as a function of temperature, and aqueous (NH4)2SO4–H2SO4 mixtures at 298.15 K and 323.15 K. J. Chem. Eng. Data 41, 455–467 (1996)

    Article  CAS  Google Scholar 

  17. Rard, J.A.: Isopiestic determination of the osmotic and activity coefficients of {zH2SO4 + (1 − z)MgSO4}(aq) at the temperature T = 298.15 K. I. Results for z = (0.85811, 0.71539, and 0.57353). J. Chem. Thermodyn. 29, 533–555 (1997)

    Article  CAS  Google Scholar 

  18. Rard, J.A., Clegg, S.L.: Isopiestic determination of the osmotic and activity coefficients of {zH2SO4 + (1 − z)MgSO4}(aq) at T = 298.15 K. II. Results for z = (0.43040, 0.28758, and 0.14399) and analysis with Pitzer’s model. J. Chem. Thermodyn. 31, 399–429 (1999)

    Article  CAS  Google Scholar 

  19. Rumyantsev, A., Hagemann, S., Moog, H.C.: Isopiestic investigation of the systems Fe2(SO4)3–H2SO4–H2O, FeCl3–H2O, and Fe(III)–(Na, K, Mg, Ca)n–H2O at 298.15 K. Z. Phys. Chem. 218, 1089–1127 (2004)

    Article  CAS  Google Scholar 

  20. Velázquez-Rivera, M., Palmer, D.A., Kettler, R.M.: Isopiestic measurements of the osmotic coefficients of aqueous {xH2SO4 + (1 − x)Fe2(SO4)3} solutions at 298.15 and 323.15 K. J. Solution Chem. 35, 1699–1730 (2006)

    Article  Google Scholar 

  21. Holmes, H.F., Mesmer, R.E.: An isopiestic study of {(1 − y)NaHSO4 + yNa2SO4}(aq) at elevated temperatures. J. Chem. Thermodyn. 26, 581–594 (1994)

    Article  CAS  Google Scholar 

  22. Robinson, R.A.: The osmotic and activity coefficient data of some aqueous salt solutions from vapor pressure measurements. J. Am. Chem. Soc. 59, 84–90 (1937)

    Article  CAS  Google Scholar 

  23. Burge, D.E.: Osmotic coefficients in aqueous solutions. Studies with the vapor pressure osmometer. J. Phys. Chem. 67, 2590–2593 (1963)

    Article  CAS  Google Scholar 

  24. Apelblat, A., Korin, E.: The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of aluminium chloride, aluminium nitrate and aluminium sulfate. J. Chem. Thermodyn. 34, 1919–1927 (2002)

    Article  CAS  Google Scholar 

  25. Beggerow, G.: Heats of Mixing and Solution. Landolt-Börnstein New Series, Group IV, vol. 2, p. 13. Springer, Berlin (1976)

  26. Lange, E., Miederer, W.: Verdünnungswärmen der hydrolysierenden Elektrolyte AlCl3, Th(NO3)4 und UO2(NO3)2 bei 25 °C. Z. Elektrochem. 61, 407–409 (1957)

    CAS  Google Scholar 

  27. Voznesenskaya, I.E.: Extended tables of activity and osmotic coefficients of aqueous solutions for 150 electrolytes at 25 °C (in Russian). In: Mikulin, G.I. (ed.) Problems of Physical Chemistry of Electrolyte Solutions, pp. 172–201. Khimiya, Leningrad (1968)

    Google Scholar 

  28. Voznesenskaya, I.E., Mikulin, G.I.: Tables of water activities in solutions of strong electrolytes at 25 °C (in Russian). In: Mikulin, G.I. (ed.) Problems of Physical Chemistry of Electrolyte Solutions, pp. 361–400. Khimiya, Leningrad (1968)

    Google Scholar 

  29. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. (revised). Butterworths, London (1965)

  30. Nordstrom, D.K.: The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al2O3–SO3–H2O at 298 K. Geochim. Cosmochim. Acta 46, 681–692 (1982)

    Article  CAS  Google Scholar 

  31. Christov, C.: Thermodynamic study of the K–Mg–Al–Cl–SO4–H2O system at the temperature 298.15 K. Calphad 25, 445–454 (2001)

    Article  CAS  Google Scholar 

  32. Christov, C.: Thermodynamic study of quaternary systems with participation of ammonium and sodium alums and chromium alums. Calphad 26, 341–352 (2002)

    Article  CAS  Google Scholar 

  33. Rard, J.A.: Solubility determinations by the isopiestic method and application to aqueous lanthanide nitrates at 25 °C. J. Solution Chem. 14, 457–471 (1985)

    Article  CAS  Google Scholar 

  34. Rard, J.A., Platford, R.F: Experimental methods: Isopiestic. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn., Chap. 5. CRC Press, Boca Raton (1991)

  35. Kohner, H.: Über die Konzentrationsabhängigkeit der Äquivalentrefraktion von starken Elektrolyten in Lösung. Z. Phys. Chem. B 1B, 427–455 (1928)

    Google Scholar 

  36. Cupples, H.L.: Surface tension of aluminum sulfate solutions. J. Phys. Chem. 50, 256–260 (1946)

    Article  CAS  Google Scholar 

  37. Schrödle, S., Rudolph, W.W., Hefter, G., Buchner, R.: Ion association and hydration in 3:2 electrolyte solutions by dielectric spectroscopy: aluminum sulfate. Geochim. Cosmochim. Acta 71, 5287–5300 (2007)

    Article  Google Scholar 

  38. Akitt, J.W., Farnsworth, J.A., Letellier, P.: Nuclear magnetic resonance and molar-volume studies of the complex formed between aluminium(III) and the sulphate anion. J. Chem. Soc. Faraday Trans. 1 81, 193–205 (1985)

    Article  CAS  Google Scholar 

  39. Fang, J.H., Robinson, P.D.: Alunogen, Al2(H2O)12(SO4)3·5H2O. Am. Miner. 61, 311–317 (1976)

    CAS  Google Scholar 

  40. Grønvold, F., Meisingset, K.M.: Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K. I. NH4Al(SO4)2·12H2O, KAl(SO4)2·12H2O, Al2(SO4)3·17H2O, ZnSO4·7H2O, Na2SO4·10H2O, and Na2S2O3·5H2O. J. Chem. Thermodyn. 14, 1083–1098 (1982)

    Article  Google Scholar 

  41. Kato, E., Daimon, K., Nanbu, T.: Decomposition of two aluminum sulfates and characterization of the resultant aluminas. J. Am. Ceram. Soc. 64, 436–443 (1981)

    Article  CAS  Google Scholar 

  42. Apte, N.G., Kiran, E., Hassler, J.C., Chernosky, J.V.: Kinetic modeling of thermal decomposition of aluminum sulfate. Chem. Eng. Commun. 74, 47–61 (1988)

    Article  CAS  Google Scholar 

  43. Çılgı, G.K., Cetişli, H.: Thermal decomposition kinetics of aluminum sulfate hydrate. J. Therm. Anal. Calorim. 98, 855–861 (2009)

    Article  Google Scholar 

  44. Weast, R.C., Selby, S.M.: CRC Handbook of Chemistry and Physics, 48th edn. The Chemical Rubber Company, Cleveland (1967)

    Google Scholar 

  45. Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous MgCl2 solutions at 25 °C. J. Chem. Eng. Data 26, 38–43 (1981)

    Article  CAS  Google Scholar 

  46. Clegg, S.L., Rard, J.A., Pitzer, K.S.: Thermodynamic properties of 0–6 mol kg−1 aqueous sulfuric acid from 273.15 to 328.15 K. J. Chem. Soc. Faraday Trans. 90, 1875–1894 (1994)

    Article  CAS  Google Scholar 

  47. Baes, C.F., Jr., Mesmer, R.E.: The Hydrolysis of Cations. Robert E. Kreiger Publishing Company, Malabar, FL (1986), pp. 112–123

    Google Scholar 

  48. Palmer, D.A., Wesolowski, D.J.: Aluminum speciation and equilibrium in aqueous solution: III. Potentiometric determination of the first hydrolysis constant of aluminum(III) in sodium chloride solutions to 125 °C. Geochim. Cosmochim. Acta 57, 2929–2938 (1993)

    Article  CAS  Google Scholar 

  49. Furrer, G., Trusch, B., Müller, C.: The formation of polynuclear Al13 under simulated natural conditions. Geochim. Cosmochim. Acta 56, 3831–3838 (1992)

    Article  CAS  Google Scholar 

  50. Plyasunov, A.V., Grenthe, I.: The temperature dependence of stability constants for the formation of polynuclear cationic complexes. Geochim. Cosmochim. Acta 58, 3561–3582 (1994)

    Article  CAS  Google Scholar 

  51. Ridley, M.K., Wesolowski, D.J., Palmer, D.A., Kettler, R.M.: Association quotients of aluminum sulphate complexes in NaCl media from 50 to 125 °C: results of a potentiometric and solubility study. Geochim. Cosmochim. Acta 63, 459–472 (1999)

    Article  CAS  Google Scholar 

  52. Rudolph, W.W., Mason, R.: Study of aqueous Al2(SO4)3 solution under hydrothermal conditions: sulfate ion pairing, hydrolysis, and formation of hydronium alunite. J. Solution Chem. 30, 527–548 (2001)

    Article  CAS  Google Scholar 

  53. Chibizov, V.P., Moshinskii, A.S.: The M2(SO4)3–H2SO4–H2O systems (M = Al, Ga, In) at 25 °C. Russ. J. Inorg. Chem. 28, 1361–1363 (1983)

    Google Scholar 

  54. Taylor, D., Bassett, H.: The system Al2(SO4)3–H2SO4–H2O. J. Chem. Soc. 4431–4442 (1952)

  55. Clegg, S.L., Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of NaCl + SrCl2 + H2O at 298.15 K and representation with an extended ion-interaction model. J. Chem. Eng. Data 50, 1162–1170 (2005)

    Article  CAS  Google Scholar 

  56. Pitzer, K.S.: Ion interaction approach: Theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn., Chap. 3. CRC Press, Boca Raton (1991)

  57. Archer, D.G.: Thermodynamic properties of the NaCl + H2O system. II. Thermodynamic properties of NaCl(aq), NaCl·2H2O(cr), and phase equilibria. J. Phys. Chem. Ref. Data 21, 793–829 (1992)

    Article  CAS  Google Scholar 

  58. Pitzer, K.S., Silvester, L.F.: Thermodynamics of electrolytes. 11. Properties of 3:2, 4:2, and other high-valence types. J. Phys. Chem. 82, 1239–1242 (1978)

    Article  CAS  Google Scholar 

  59. Reardon, E.J.: Ion interaction parameters for AlSO4 and application to the prediction of metal sulfate solubility in binary salt systems. J. Phys. Chem. 92, 6426–6431 (1988)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work (LLNL preprint LLNL-JRNL-74533) was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48 between the years 1999 and 2004. Major support was provided by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences from 1999 to 2002. The author thanks Dr. Alexander M. Kalinkin for providing copies of references 27 and 28, Roger Martinelli for the inductively coupled plasma–atomic emission spectroscopy impurity analysis, and Frank Gouveia for preparing the plot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Rard.

Additional information

This work was performed between 1999 and 2004 while the author was employed at the Chemistry, Materials, Earth and Life Sciences Directorate, Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550, USA. Lawrence Livermore National Laboratory is now managed by Lawrence Livermore National Security LLC rather than the University of California.

Appendix

Appendix

Osmotic coefficients of the {hH2SO4 + (1 − h)Al2(SO4)3}(aq) solutions at T = 298.15 K. See Tables 5, 6, 7, 8, 9 and 10.

Table 5 z = 0.21803, h = 0.14332
Table 6 z = 0.40026, h = 0.28593
Table 7 z = 0.556845, h = 0.42985
Table 8 z = 0.69135, h = 0.57337
Table 9 z = 0.80726, h = 0.71534
Table 10 z = 0.90952, h = 0.85777

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rard, J.A. Isopiestic Determination of the Osmotic and Activity Coefficients of the {hH2SO4 + (1 − h)Al2(SO4)3}(aq) System at T = 298.15 K. 1. Experimental Results at Stoichiometric Ionic Molality Factions h = (0.85777, 0.71534, 0.57337, 0.42985, 0.28593, and 0.14332). J Solution Chem 47, 1556–1577 (2018). https://doi.org/10.1007/s10953-018-0746-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0746-8

Keywords

Navigation