Skip to main content
Log in

Abraham Model Correlations for Triethylene Glycol Solvent Derived from Infinite Dilution Activity Coefficient, Partition Coefficient and Solubility Data Measured at 298.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A gas chromatographic headspace analysis method was used to experimentally determine gas-to-liquid partition coefficients and infinite dilution activity coefficients for 29 liquid organic solutes dissolved in triethylene glycol at 298.15 K. Solubilities were also determined at 298.15 K for 23 crystalline nonelectrolyte organic compounds in triethylene glycol based on spectroscopic absorbance measurements. The experimental results of the headspace chromatographic and spectroscopic solubility measurements were converted to gas-to-triethylene glycol and water-to-triethylene glycol partition coefficients, and molar solubility ratios using standard thermodynamic relationships. Expressions were derived for solute transfer into triethylene glycol by combining our measured experimental values with published literature data. Mathematical correlations based on the Abraham model describe the observed partition coefficient and solubility data to within 0.16 log10 units (or less).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Byrne, F.P., Jin, S., Paggiola, G., Petchey, T.H.M., Clark, J.H., Farmer, T.J., Hunt, A.J., McElroy, C.R., Sherwood, J.: Tools and techniques for solvent selection: green solvent selection guide. Sustain Chem. Proc. 4, 7/1–7/24 (2016)

    CAS  Google Scholar 

  2. Dunn, P.J.: The importance of green chemistry in process research and development. Chem. Soc. Rev. 41, 1452–1461 (2012)

    Article  CAS  Google Scholar 

  3. Weis, D.C., Visco, D.P.: Computer-aided molecular design using the Signature molecular descriptor: application to solvent selection. Comput. Chem. Eng. 34, 1018–1029 (2010)

    Article  CAS  Google Scholar 

  4. Henderson, R.K., Jimenez-Gonzalez, C., Constable, D.J.C., Alston, S.R., Inglis, G.G.A., Fisher, G., Sherwood, J., Binks, S.P., Curzons, A.D.: Expanding GSK’s solvent selection guide—embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem. 13, 854–862 (2011)

    Article  CAS  Google Scholar 

  5. Lawrenson, S., North, M., Peigneguy, F., Routledge, A.: Greener solvents for solid-phase synthesis. Green Chem. 19, 952–962 (2017)

    Article  CAS  Google Scholar 

  6. Pacheco, A.A.C., Sherwood, J., Zhenova, A., McElroy, C.R., Hunt, A.J., Parker, H.L., Farmer, T.J., Constantinou, A., De Bruyn, M., Whitwood, A.C., Raverty, W., Clark, J.H.: Intelligent approach to solvent substitution: the identification of a new class of levoglucosenone derivatives. Chemsuschem 9, 3503–3512 (2016)

    Article  CAS  Google Scholar 

  7. Sathish, M., Silambarasan, S., Madhan, B., Raghava Rao, J.: Exploration of GSK’S solvent selection guide in leather industry: a CSIR-CLRI tool for sustainable leather manufacturing. Green Chem. 18, 5806–5813 (2016)

    Article  CAS  Google Scholar 

  8. Kralisch, D., Ott, D., Gericke, D.: Rules and benefits of life cycle assessment in green chemical process and synthesis design: a tutorial review. Green Chem. 17, 123–145 (2015)

    Article  CAS  Google Scholar 

  9. Abraham, M.H., Smith, R.E., Luchtefeld, R., Boorem, A.J., Luo, R., Acree Jr., W.E.: Prediction of solubility of drugs and other compounds in organic solvents. J. Pharm. Sci. 99, 1500–1515 (2010)

    Article  CAS  Google Scholar 

  10. Sedov, I.A., Magsumov, T.I., Hart, E., Higgins, E., Grover, D., Zettl, H., Zad, M., Acree Jr., W.E., Abraham, M.H.: Abraham model expressions for describing water-to-diethylene glycol and gas-to-diethylene glycol solute transfer processes at 298.15 K. J. Solution Chem. 46, 331–351 (2017)

    Article  CAS  Google Scholar 

  11. Sedov, I.A., Salikov, T., Hart, E., Higgins, E., Acree Jr., W.E., Abraham, M.H.: Abraham model linear free energy relationships for describing the partitioning and solubility behavior of nonelectrolyte organic solutes dissolved in pyridine at 298.15 K. Fluid Phase Equilib. 431, 66–74 (2017)

    Article  CAS  Google Scholar 

  12. Sedov, I.A., Khaibrakhmanova, D., Hart, E., Grover, D., Zettl, H., Koshevarova, V., Dai, C., Zhang, S., Schmidt, A., Acree Jr., W.E., Abraham, M.H.: Development of Abraham model correlations for solute transfer into both 2-propoxyethanol and 2-isopropoxyethanol at 298.15 K. J. Mol. Liq. 212, 833–840 (2015)

    Article  CAS  Google Scholar 

  13. Hart, E., Grover, D., Zettl, H., Koshevarova, V., Zhang, S., Dai, C., Acree Jr., W.E., Sedov, I.A., Stolov, M.A., Abraham, M.H.: Abraham model correlations for solute transfer into 2-methoxyethanol from water and from the gas phase. J. Mol. Liq. 209, 738–744 (2015)

    Article  CAS  Google Scholar 

  14. Sedov, I.A., Stolov, M.A., Hart, E., Grover, D., Zettl, H., Koshevarova, V., Dai, C., Zhang, S., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for describing solute transfer into 2-butoxyethanol from both water and the gas phase at 298 K. J. Mol. Liq. 209, 196–202 (2015)

    Article  CAS  Google Scholar 

  15. Abraham, M.H., Acree Jr., W.E.: Equations for the partition of neutral molecules, ions and ionic species from water to water–methanol mixtures. J. Solution Chem. 45, 861–874 (2016)

    Article  CAS  Google Scholar 

  16. Abraham, M.H., Acree Jr., W.E.: Partition coefficients and solubilities of compounds in the water–ethanol solvent system. J. Solution Chem. 40, 1279–1290 (2011)

    Article  CAS  Google Scholar 

  17. Abraham, M.H., Acree Jr., W.E.: Equations for the partition of neutral molecules, ions and ionic species from water to water–ethanol mixtures. J. Solution Chem. 41, 730–740 (2012)

    Article  CAS  Google Scholar 

  18. Jiang, B., Horton, M.Y., Acree Jr., W.E., Abraham, M.H.: Ion-specific equation coefficient version of the Abraham model for ionic liquid solvents: determination of coefficients for tributylethylphosphonium, 1-butyl-1-methylmorpholinium, 1-allyl-3-methylimidazolium and octyltriethylammonium cations. Phys. Chem. Liq. 55, 358–385 (2017)

    Article  CAS  Google Scholar 

  19. Abraham, M.H.: Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 22, 73–83 (1993)

    Article  CAS  Google Scholar 

  20. Abraham, M.H., Ibrahim, A., Zissimos, A.M.: Determination of sets of solute descriptors from chromatographic measurements. J. Chromatog. A 1037, 29–47 (2004)

    Article  CAS  Google Scholar 

  21. Clarke, E.D., Mallon, L.: The determination of Abraham descriptors and their application to crop protection research. In: Jeschke, P., Kramer, W., Schirmer, U., Witschel, M. (eds.) Modern Methods in Crop Protection Research. Wiley-VCH Verlag GmbH & Co., Weinheim (2012)

    Google Scholar 

  22. Endo, S., Goss, K.-U.: Applications of polyparameter linear free energy relationships in environmental chemistry. Environ. Sci. Technol. 48, 12477–12491 (2014)

    Article  CAS  Google Scholar 

  23. Endo, S., Brown, T.N., Watanabe, N., Ulrich, N., Bronner, G., Abraham, M.H., Goss, K.-U.: UFZ-LSER database v 3.1 [Internet]. Helmholtz Centre for Environmental Research-UFZ, Leipzig, 2015 (accessed 08.11 Aug 2016). http://www.ufz.de/lserd. Accessed 17 Mar 2017

  24. Fogg, P.G.T.: Carbon Dioxide in Non-aqueous Solvents at Pressures Less than 200 kPa. IUPAC Solubility Data Series, vol. 50, Pergamon Press, Oxford (1992)

  25. Fogg, P.G.T., Young, C.L.: Hydrogen Sulfide, Deuterium Sulfide and Hydrogen Selenide. IUPAC Solubility Data Series, vol. 32, Pergamon Press, Oxford (1988)

  26. Jou, F.Y., Deshmukh, R.D., Otto, F.D., Mather, A.E.: Vapor–liquid equilibria for acid gases and lower alkanes in triethylene glycol. Fluid Phase Equilib. 36, 121–140 (1987)

    Article  CAS  Google Scholar 

  27. Williams-Wynn, M.D., Letcher, T.M., Naidoo, P., Ramjugernath, D.: Activity coefficients at infinite dilution of organic solutes in diethylene glycol and triethylene glycol from gas-liquid chromatography. J. Chem. Thermodyn. 65, 120–130 (2013)

    Article  CAS  Google Scholar 

  28. Alessi, P., Kikik, I., Tlustos, G.: Activity coefficients of hydrocarbons in glycol. Chim. Ind. Milan 53, 925–928 (1971)

    CAS  Google Scholar 

  29. Arancibia, E.L., Catoggio, J.A.: Gas chromatographic study of solution and adsorption of hydrocarbons on glycols. I. Diethylene glycol and triethylene glycol. J. Chromatogr. 197, 135–145 (1980)

    Article  CAS  Google Scholar 

  30. Sedov, I.A., Stolov, M.A., Solomonov, B.N.: Tert-butyl chloride as a probe of solvophobic effects. Fluid Phase Equilib. 382, 164–168 (2014)

    Article  CAS  Google Scholar 

  31. Bradley, J.C.: Open Notebook Science Challenge. http://onschallenge.wikispaces.com/0. Accessed 1 Feb 2107

  32. Acree Jr., W.E., Abraham, M.H.: Can. J. Chem. 79, 1466–1476 (2001)

    Article  CAS  Google Scholar 

  33. Roy, L.E., Hernandez, C.E., Acree Jr., W.E.: Solubility of anthracene in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory (MOT). Polycyclic Aromat. Compd. 13, 105–116 (1999)

    Article  CAS  Google Scholar 

  34. Acree Jr., W.E., Abraham, M.H.: Solubility predictions for crystalline polycyclic aromatic hydrocarbons (PAHs) dissolved in organic solvents based upon the Abraham general solvation model. Fluid Phase Equilib. 201, 245–258 (2002)

    Article  CAS  Google Scholar 

  35. Acree Jr., W.E., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of benzil solubilities with the Abraham general solvation model. J. Solution Chem. 31, 293–303 (2002)

    Article  CAS  Google Scholar 

  36. De Fina, K.M., Sharp, T.L., Acree Jr., W.E.: Solubility of biphenyl in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory. Can. J. Chem. 77, 1589–1593 (1999)

    Article  Google Scholar 

  37. Stephens, T.W., Loera, M., Calderas, M., Diaz, R., Montney, N., Acree Jr., W.E., Abraham, M.H.: Determination of Abraham model solute descriptors for benzoin based on measured solubility ratios. Phys. Chem. Liq. 50, 254–265 (2012)

    Article  CAS  Google Scholar 

  38. Flanagan, K.B., Hoover, K.R., Garza, O., Hizon, A., Soto, T., Villegas, N., Acree Jr., W.E., Abraham, M.H.: Mathematical correlation of 1-chloroanthraquinone solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 44, 377–386 (2006)

    Article  CAS  Google Scholar 

  39. Daniels, C.R., Charlton, A.K., Wold, R.M., Acree Jr., W.E., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: solubilities of 3-methylbenzoic acid and 4-chlorobenzoic acid in organic solvents. Can. J. Chem. 81, 1492–1501 (2003)

    Article  CAS  Google Scholar 

  40. Stovall, D.M., Givens, C., Keown, S., Hoover, K.R., Barnes, R., Harris, C., Lozano, J., Nguyen, M., Rodriguez, E., Acree Jr., W.E., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 4-chloro-3-nitrobenzoic acid and 2-chloro-5-nitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 43, 351–360 (2005)

    Article  CAS  Google Scholar 

  41. Wilson, A., Tian, A., Chou, V., Quay, A.N., Acree Jr., W.E., Abraham, M.H.: Experimental and predicted solubilities of 3,4-dichlorobenzoic acid in select organic solvents and in binary aqueous–ethanol mixtures. Phys. Chem. Liq. 50, 324–335 (2012)

    Article  CAS  Google Scholar 

  42. Brumfield, M., Wadawadigi, A., Kuprasertkul, N., Mehta, S., Stephens, T.W., Barrera, M., De La Rosa, J., Kennemer, K., Meza, J., Acree Jr., W.E., Abraham, M.H.: Determination of Abraham model solute descriptors for three dichloronitrobenzenes from measured solubilities in organic solvents. Phys. Chem. Liq. 53, 163–173 (2015)

    Article  CAS  Google Scholar 

  43. Bowen, K.R., Stephens, T.W., Lu, H., Satish, K., Shan, D., Acree Jr., W.E., Abraham, M.H.: Experimental and predicted solubilities of 3,4-dimethoxybenzoic acid in select organic solvents of varying polarity and hydrogen-bonding character. Eur. Chem. Bull. 2, 577–583 (2013)

    CAS  Google Scholar 

  44. Hoover, K.R., Coaxum, R., Pustejovsky, E., Acree Jr., W.E., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: part 5—mathematical correlation of 3,5-dinitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 457–466 (2004)

    Article  CAS  Google Scholar 

  45. Ye, S., Saifullah, M., Grubbs, L.M., McMillan-Wiggins, M.C., Acosta, P., Mejorado, D., Flores, I., Acree Jr., W.E., Abraham, M.H.: Determination of the Abraham model solute descriptors for 3,5-dinitro-2-methylbenzoic acid from measured solubility data in organic solvents. Phys. Chem. Liq. 49, 821–829 (2011)

    Article  CAS  Google Scholar 

  46. Fletcher, K.A., Hernandez, C.E., Roy, L.E., Coym, K.S., Acree Jr., W.E.: Solubility of diphenyl sulfone in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon the general solvation model. Can. J. Chem. 77, 1214–1217 (1999)

    Article  CAS  Google Scholar 

  47. Monarrez, C.I., Acree Jr., W.E., Abraham, M.H.: Prediction and mathematical correlation of the solubility of fluorene in alcohol solvents based upon the Abraham general solvation model. Phys. Chem. Liq. 40, 581–591 (2002)

    Article  CAS  Google Scholar 

  48. Stovall, D.M., Acree Jr., W.E., Abraham, M.H.: Solubility of 9-fluorenone, thianthrene and xanthene in organic solvents. Fluid Phase Equilib. 232, 113–121 (2005)

    Article  CAS  Google Scholar 

  49. Hoover, K.R., Stovall, D.M., Pustejovsky, E., Coaxum, R., Pop, K., Acree Jr., W.E., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents—mathematical correlation of 2-methoxybenzoic acid and 4-methoxybenzoic acid solubilities with the Abraham solvation parameter model. Can. J. Chem. 82, 1353–1360 (2014)

    Article  Google Scholar 

  50. Coaxum, R., Hoover, K.R., Pustejovsky, E., Stovall, D.M., Acree Jr., W.E., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: part 3—mathematical correlation of 2-methylbenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 313–322 (2004)

    Article  CAS  Google Scholar 

  51. Hart, E., Ramirez, A.M., Cheeran, S., Barrera, M., Horton, M.Y., Wadawadigi, A., Acree Jr., W.E., Abraham, M.H.: Determination of Abraham model solute descriptors for 2-methyl-3-nitrobenzoic acid from measured solubility data in alcohol, alkyl ether, alkyl acetate and 2-alkoxyalcohol mono-solvents. Phys. Chem. Liq. (2017). https://doi.org/10.1080/00319104.2017.1283692

    Google Scholar 

  52. Charlton, A.K., Daniels, C.R., Wold, R., Pustejovsky, E., Acree Jr., W.E., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 3-nitrobenzoic acid solubilities with the Abraham general solvation model. J. Mol. Liq. 116, 19–28 (2004)

    Article  Google Scholar 

  53. Hoover, K.R., Coaxum, R., Pustejovsky, E., Stovall, D.M., Acree Jr., W.E., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: part 4—mathematical correlation of 4-nitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 339–347 (2004)

    Article  CAS  Google Scholar 

  54. Abraham, M.H., Acree Jr., W.E., Cometto-Muniz, J.E.: Partition of compounds from water and from air into amides. New J. Chem. 33, 2034–2043 (2009)

    Article  CAS  Google Scholar 

  55. Abraham, M.H., Acree Jr., W.E., Leo, A.J., Hoekman, D.: Partition of compounds from water and from air into the wet and dry monohalobenzenes. New J. Chem. 33, 1685–1692 (2009)

    Article  CAS  Google Scholar 

  56. Abraham, M.H., Acree, W.E., Leo, A.J., Hoekman, D.: The partition of compounds from water and from air into wet and dry ketones. New J. Chem. 33, 568–573 (2009)

    Article  CAS  Google Scholar 

  57. Sprunger, L.M., Proctor, A., Acree Jr., W.E., Abraham, M.H., Benjelloun-Dakhama, N.: Correlation and prediction of partition coefficient between the gas phase and water, and the solvents dry methyl acetate, dry and wet ethyl acetate, and dry and wet butyl acetate. Fluid Phase Equilib. 270, 30–44 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work of Igor Sedov and Timur Magsumov was performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. Maribel Barrera thanks the University of North Texas and the U.S. Department of Education for support provided under the Ronald E. McNair Postbaccalaureate Achievement Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Acree Jr..

Glossary of Symbols and Definitions

a k

Solvent property in Eq. 2 of the Abraham model reflecting the ability of the organic solvent to act as an H-bond acceptor

a p

Solvent property in Eq. 1 of the Abraham model reflecting the ability of the organic solvent to act as an H-bond acceptor

b k

Solvent property in Eq. 2 of the Abraham model reflecting the ability of the organic solvent to act as an H-bond donor

b p

Solvent property in Eq. 2 of the Abraham model reflecting the ability of the organic solvent to act as an H-bond donor

c k

Constant in Eq. 1 of the Abraham model

c p

Constant in Eq. 1 of the Abraham model

e k

Solvent property in Eq. 2 of the Abraham model reflecting the ability of the organic solvent to interact with dissolved solutes by electron lone pair interactions

e p

Solvent property in Eq. 1 of the Abraham model reflecting the ability of the organic solvent to interact with dissolved solutes by electron lone pair interactions

l k

Solvent property in Eq. 2 of the Abraham model describing the dispersion forces/cavity formation

p osolute

The vapor pressure of the solute at 298.15 K

s k

Solvent property in Eq. 2 of the Abraham model that reflects the dipolarity/polarizability of the organic solvent

s p

Solvent property in Eq. 1 of the Abraham model that reflects the dipolarity/polarizability of the organic solvent

v p

Solvent property in Eq. 1 of the Abraham model describing the dispersion forces/cavity formation

A

Abraham model solute descriptor corresponding to the overall or total hydrogen-bond acidity

B

Abraham model solute descriptor corresponding to the overall or total hydrogen-bond basicity

C S,gas

Molar gas phase concentration of the solute used in calculating the solubility ratio for Eq. 2 of the Abraham model

C S,organic

Molar solubility of the solute in the organic solvent

C S,water

Molar solubility of the solute in water

E

Solute descriptor corresponding to the solute excess molar refractivity in units of (cm3·mol–1)/10

Δsolv G

The Gibbs energy of solvation of the solute

K

The solute’s gas-to-organic solvent partition coefficient

K w

The solute’s gas-to-water partition coefficient at 298.15 K

L

The logarithm of the gas-to-hexadecane partition coefficient at 298 K

P

The solute’s water-to-organic solvent partition coefficient

R

The universal gas constant

S

Abraham model solute descript that quantifies the dipolarity/-polarizability of the solute

T

The system temperature in Kelvin

V

Refers to the McGowan volume in units of (cm3·mol–1)/10

V solute

The molar volume of the solute

V solvent

The molar volume of the solvent at 298.15 K

X S,organic(exp.)

The experimental mole fraction solubility of the solute in the organic solvent

γ

The infinite dilution activity coefficient of the solute

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedov, I.A., Magsumov, T.I., Hart, E. et al. Abraham Model Correlations for Triethylene Glycol Solvent Derived from Infinite Dilution Activity Coefficient, Partition Coefficient and Solubility Data Measured at 298.15 K. J Solution Chem 46, 2249–2267 (2017). https://doi.org/10.1007/s10953-017-0692-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0692-x

Keywords

Navigation