Skip to main content
Log in

Volumetric and UV Absorption Studies on Interactions of an Active Pharmaceutical Ingredient Ionic Liquid (API-IL) Domiphen l-Proline with Amino Acids and Glycyl Dipeptides in Aqueous Solution at T = (293.15–308.15) K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Novel ionic liquids containing the domiphen cation, as an active pharmaceutical ingredient ionic liquid (API-IL), domiphen l-proline ([DOM][l-PRO]) was synthesized and the interactions of domiphen l-proline with some small biomolecules (amino acids and glycyl dipeptides) were investigated at different temperatures from density and UV–Vis spectroscopy measurements. The apparent molar volumes, standard partial molar volumes, transfer volumes, hydration numbers and partial molar expansibilities of small biomolecules have been calculated. Group contributions of amino acids/dipeptides to the standard partial molar volume were determined and the contributions from the zwitterionic end group (NH3 +, COO), CH2 and (CH2CONH) groups have been obtained. The binding constants between small biomolecules and [DOM][l-PRO] were also obtained. A detailed insight into the physicochemical interactions in the ternary systems was obtained through the perusal of these parameters. Compared with [DOM][Br], [DOM][l-PRO] interacts with small biomolecules weakly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rogers, R.D., Seddon, K.R.: Ionic liquids solvents of the future. Science 302, 792–793 (2003)

    Article  Google Scholar 

  2. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)

    Article  CAS  Google Scholar 

  3. Pinto, P.C.A.G., Ribeiro, D.M.G.P., Azevedo, A.M.O., Justina, V.D., Cunha, E., Bica, K., Vasiloiu, M., Reisa, S., Lucia, M., Saraiva, M.F.S.: Active pharmaceutical ingredients based on salicylate ionic liquids: insights into the evaluation of pharmaceutical profiles. New J. Chem. 37, 4095–4102 (2013)

    Article  CAS  Google Scholar 

  4. Hough, W.L., Smiglak, M., Rodriguez, H., Swatloski, R.P., Spear, S.K., Daly, D.T., Pernak, J., Grisel, J.E., Carliss, R.D., Soutullo, M.D., Davis, J., Rogers, R.D.: The third evolution of ionic liquids: active pharmaceutical ingredients. New J. Chem. 31, 1429–1436 (2007)

    Article  CAS  Google Scholar 

  5. Ferraz, R., Branco, L.C., Marrucho, I.M., Araujo, J.M.M., Rebelo, L.P.N., Ponte, M.N., Prudêncio, C., Noronha, J.P., Petrovski, Z.: Development of novel ionic liquids based on ampicillin. Med. Chem. Commun. 3, 494–497 (2012)

    Article  CAS  Google Scholar 

  6. Florindo, C., Araujo, J.M.M., Alves, F., Matos, C., Ferraz, R., Prudêncio, C., Noronha, J.P., Petrovski, Z., Branco, L.C., Rebelo, L.P.N., Marrucho, I.M.: Evaluation of solubility and partition properties of ampicillin-based ionic liquids. Int. J. Pharm. 456, 553–559 (2013)

    Article  CAS  Google Scholar 

  7. Bica, K., Rijksen, C., Nieuwenhuyzen, M., Rogers, R.D.: In search of pure liquid salt forms of aspirin: ionic liquid approaches with acetylsalicylic acid and salicylic acid. Phys. Chem. Chem. Phys. 12, 2011–2017 (2010)

    Article  CAS  Google Scholar 

  8. Hough-Troutman, W.L., Smiglaki, M., Griffin, S., Reichert, W.M., Mirska, I., Jodynis-Liebert, J., Adamska, T., Nawrot, J., Stasiewicz, M., Rogers, R.D., Pernak, J.: Ionic liquids with dual biological function: sweet and anti-microbial, hydrophobic quaternary ammonium-based salts. New J. Chem. 33, 26–33 (2009)

    Article  CAS  Google Scholar 

  9. Cybulski, J., Wisniewska, A., Kulig-Adamiak, A., Dabrowski, Z., Praczyk, T., Michalczyk, A., Walkiewicz, F., Materna, K., Pernak, J.: Mandelate and prolinate ionic liquids: synthesis, characterization, catalytic and biological activity. Tetrahedron Lett. 52, 1325–1328 (2011)

    Article  CAS  Google Scholar 

  10. Stoimenovski, J., MacFarlane, D.R., Bica, K., Rogers, R.D.: Crystalline vs. ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharm. Res. 27, 521–526 (2010)

    Article  CAS  Google Scholar 

  11. Alves, F., Oliveira, F.S., Schroder, B., Matos, C., Marrucho, I.M.: Synthesis, characterization, and liposome partition of a novel tetracycline derivative using the ionic liquids framework. J. Pharm. Sci. 102, 1504–1512 (2013)

    Article  CAS  Google Scholar 

  12. Shekaari, H., Zafarani-Moattar, M.T., Mirheydari, S.N.: Conductometric analysis of 1-butyl-3-methylimidazolium ibuprofenate as an active pharmaceutical ingredient ionic liquid (API-IL) in the aqueous amino acids solutions. J. Chem. Thermodyn. 103, 165–175 (2016)

    Article  CAS  Google Scholar 

  13. Shekaari, H., Zafarani-Moattar, M.T., Mirheydari, S.N.: Thermodynamic properties of 1-butyl-3-methylimidazolium salicylate as an active pharmaceutical ingredient ionic liquid (API-IL) in aqueous solutions of glycine and l-alanine at T = (288.15–318.15) K. Thermochim. Acta 637, 51–68 (2016)

    Article  CAS  Google Scholar 

  14. Yan, Z.N., Wen, X.L., Kang, Y.X., Chu, W.W.: Intermolecular interactions of a-amino acids and glycyl dipeptides with the drug domiphen bromide in aqueous solutions analyzed by volumetric and UV–Vis spectroscopy methods. J. Chem. Thermodyn. 101, 300–307 (2016)

    Article  CAS  Google Scholar 

  15. Redlich, O., Meyer, D.M.: The molal volumes of electrolytes. Chem. Rev. 64, 221–227 (1964)

    Article  CAS  Google Scholar 

  16. Belibagli, K., Ayranci, E.: Viscosities and apparent molar volumes of some amino acids in water and in 6 M guanidine hydrochloride at 25 °C. J. Solution Chem. 19, 867–882 (1990)

    Article  CAS  Google Scholar 

  17. Yan, Z.N., Wang, X.L., Bai, X.R., Wang, S.Q., Wang, J.J.: Volumetric, conductometric and fluorescence probe studies of interactions between glycyl dipeptides and sodium caprylate in aqueous media. J. Chem. Thermodyn. 52, 89–94 (2012)

    Article  CAS  Google Scholar 

  18. Yan, Z.N., Liu, R.L., Wu, S.Y., Bai, X.R., Wang, J.J.: Effect of temperature on the interactions of glycyl dipeptides with sodium perfluorooctanoate in aqueous solution: volumetric, conductometric, and spectroscopic study. J. Chem. Thermodyn. 57, 360–366 (2013)

    Article  CAS  Google Scholar 

  19. Yan, Z.N., Wu, S.Y., Pan, Q., Gen, R., Gu, B.X., Wang, J.J.: Interactions of dipeptides with Triton X-100 in aqueous solution: a volumetric and spectroscopic study. J. Chem. Thermodyn. 71, 112–117 (2014)

    Article  CAS  Google Scholar 

  20. Rajagopal, K., Gladson, S.E.: Partial molar volume and partial molar compressibility of four homologous α-amino acids in aqueous sodium fluoride solutions at different temperatures. J. Chem. Thermodyn. 43, 852–867 (2011)

    Article  CAS  Google Scholar 

  21. Anwar, A., Vidiksha, B., Priyanka, B.: Volumetric study of α-amino acids and their group contributions in aqueous solutions of cetyltrimethylammonium bromide at different temperatures. J. Mol. Liq. 177, 209–214 (2013)

    Article  Google Scholar 

  22. Chauhan, S., Pathania, L., Sharma, K., Kumar, G.: Volumetric, acoustical and viscometric behavior of glycine and Dl-alanine in aqueous furosemide solutions at different temperatures. J. Mol. Liq. 212, 656–664 (2015)

    Article  CAS  Google Scholar 

  23. Wen, X.L., Yan, Z.N., Kang, Y.X., Zhang, S.Y.: Apparent molar volume, conductivity, and fluorescence studies of ternary systems of dipeptides plus ionic liquids ([C(n)mim]Br, n = 10, 14) + water at different temperatures. Colloid Polym. Sci. 293, 2485–2495 (2015)

    Article  CAS  Google Scholar 

  24. Yan, Z.N., Wang, J.J., Liu, W.B., Lu, J.S.: Apparent molar volumes and viscosity B-coefficients of some amino acids in aqueous solutions from 278.15 to 308.15 K. Thermochim. Acta 334, 17–27 (1999)

    Article  CAS  Google Scholar 

  25. Pal, A., Chauhan, N.: Volumetric behaviour of amino acids and their group contributions in aqueous lactose solutions at different temperatures. J. Chem. Thermodyn. 43, 140–146 (2011)

    Article  CAS  Google Scholar 

  26. Mishra, A.K., Ahluwalia, J.C.: Apparent molal volumes of amino acids, N-acetylamino acids, and peptides in aqueous solutions. J. Phys. Chem. 88, 86–92 (1984)

    Article  CAS  Google Scholar 

  27. Iqbal, M., Chaudhary, M.A.: Effect of temperature on volumetric and viscometric properties of some non-steroidal anti-inflammatory drugs in aprotic solvents. J. Chem. Thermodyn. 42, 951–956 (2010)

    Article  CAS  Google Scholar 

  28. Singh, S.K., Kundu, A., Kishore, N.: Interactions of some amino acids and glycine peptides with aqueous sodium dodecyl sulfate and cetyltrimethylammonium bromide at T = 298.15 K: a volumetric approach. J. Chem. Thermodyn. 36, 7–16 (2004)

    Article  CAS  Google Scholar 

  29. Franks, F., Quickenden, M.A., Reid, D.S., Watson, B.: Calorimetric and volumetric studies of dilute aqueous of cycle ether derivatives. Trans. Faraday Soc. 66, 582–589 (1970)

    Article  CAS  Google Scholar 

  30. Yan, Z.N., Sun, X.M., Li, W.W., Li, Y., Wang, J.J.: Interactions of glutamine dipeptides with sodium dodecyl sulfate in aqueous solution measured by volume, conductivity, and fluorescence spectra. J. Chem. Thermodyn. 43, 1468–1474 (2011)

    Article  CAS  Google Scholar 

  31. Berlin, E., Pallansch, M.J.: Densities of several proteins and l-amino acids in the dry state. J. Phys. Chem. 72, 1887–1889 (1968)

    Article  CAS  Google Scholar 

  32. Yan, Z.N., Zhao, Y., Xing, R.H., Wang, X.G., Wang, J.J.: Volumetric and conductometric behavior at T = 298.15 K of 2-[(2-aminoacetyl)amino]acetic acid, 2-[(2-aminoacetyl)amino]-3-methylbutanoic acid, and (2S)-2-[(2-aminoacetyl)amino]-4-methylpentanoic acid with sodium hexanoate. J. Chem. Eng. Data 55, 759–764 (2010)

    Article  CAS  Google Scholar 

  33. Sinha, B., Sarkar, A., Roy, P., Brahman, D.: Physicochemical properties of l-alanine in aqueous silver sulphate solutions at (298.15, 308.15, and 318.15) K. Int. J. Thermophys. 32, 2062–2078 (2011)

    Article  CAS  Google Scholar 

  34. Hepler, L.: Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613–4617 (1969)

    Article  CAS  Google Scholar 

  35. Yazdanbakhsh, M.R., Mohammadi, A., Mohajerani, E., Nemati, H., Nataj, N.H., Moheghi, A., Naeemikhah, E.: Novel azo disperse dyes derived from N-benzyl-N-ethyl-aniline: synthesis, solvatochromic and optical properties. J. Mol. Liq. 151, 107–112 (2010)

    Article  CAS  Google Scholar 

  36. Kumar, H., Kaur, K.: Interaction of antibacterial drug ampicillin with glycine and its dipeptides analyzed by volumetric and acoustic methods. Thermochim. Acta 551, 40–45 (2013)

    Article  CAS  Google Scholar 

  37. Scott, R.L.: Some comments on the Benesi–Hildebrand equation. Rec. Trav. Chim. Pays-Bas 75, 787–789 (1956)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was financially supported by the Natural Science Foundation of China (No. 21573199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenning Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Chu, W., Shen, S. et al. Volumetric and UV Absorption Studies on Interactions of an Active Pharmaceutical Ingredient Ionic Liquid (API-IL) Domiphen l-Proline with Amino Acids and Glycyl Dipeptides in Aqueous Solution at T = (293.15–308.15) K. J Solution Chem 46, 1658–1679 (2017). https://doi.org/10.1007/s10953-017-0671-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0671-2

Keywords

Navigation