Skip to main content
Log in

Densities, Ultrasonic Velocities, Excess Properties and IR Spectra of Binary Liquid Mixtures of Organic Esters (Ethyl Lactate, Some Organic Carbonates)

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Organic esters of carbonic acid {dimethyl carbonate (DMC)/diethyl carbonate (DEC)/propylene carbonate (PC)}, in combination with a lactate ester {ethyl lactate (EL)}, with green chemistry characteristics were chosen for the present study of molecular interactions in binary liquid mixtures. Densities (ρ) and ultrasonic velocities (U) of the pure solvents and liquid mixtures were measured experimentally over the entire composition range at temperatures (303.15, 308.15, 313.15 and 318.15) K and atmospheric pressure. The experimental data was used to calculate thermodynamic and acoustic parameters \( V_{\text{m}}^{\text{E}} \), \( \kappa_{S}^{\text{E}} \), \( L_{\text{f}}^{\text{E}} \), \( \bar{V}_{\text{m,1}}^{{}} \), \( \bar{V}_{\text{m,2}}^{{}} \), \( \bar{V}_{\text{m,1}}^{\text{E}} \), \( \bar{V}_{\text{m,2}}^{\text{E}} \), \( \bar{V}_{ 1}^{\text{E,0}} \) and \( \bar{V}_{ 2}^{\text{E,0}} \) and the excess functions were fitted with the Redlich–Kister polynomial equation to obtain the binary solution coefficients and the standard deviations. It was observed that the values of \( V_{\text{m}}^{\text{E}} \), \( \kappa_{S}^{\text{E}} \) and \( L_{\text{f}}^{\text{E}} \) are positive for the mixtures of (EL + DMC/DEC) and negative for those of (EL + PC) over the entire range of composition and temperature. The positive values of \( V_{\text{m}}^{\text{E}} \), \( \kappa_{S}^{\text{E}} \) and \( L_{\text{f}}^{\text{E}} \) indicate the action of dispersion forces between the component molecules of (EL + DMC/DEC) mixtures whereas negative values for the mixture (EL + PC) suggest the existence of strong specific interactions between the component molecules, probably resulting from chemical and structural contributions. The excess properties have also been analyzed by using the reduced (\( Y^{\text{E}} /x_{1} x_{2} \)) excess function approach and the results are found to be in agreement with those from the corresponding \( Y^{\text{E}} \)(= \( V_{\text{m}}^{\text{E}} \), \( \kappa_{S}^{\text{E}} \) and \( L_{\text{f}}^{\text{E}} \)) values. This is further supported by FTIR spectral analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anastas, P.T., Warner, J.C.: Green Chemistry: theory and Practice. Oxford University Press, Oxford (England), New York (1998)

    Google Scholar 

  2. Clary, J.J., Feron, V.J., Velthuijsen, J.A.V.: Safety assessment of lactate esters. Regul. Toxicol. Pharm. 27, 88–97 (1998)

    Article  CAS  Google Scholar 

  3. Pereira, C.S.M., Silva, V.M.T.M., Rodrigues, A.E.: Ethyl lactate as a solvent: properties, applications and production processes—a review. Green Chem. 13, 2658–2671 (2011)

    Article  CAS  Google Scholar 

  4. Rivetti, F.: Dimethylcarbonate: an answer to the need for safe chemicals. In: Tundo, P., Anastas, P. (eds.) Green Chemistry: Challenging Perspectives, pp. 201–219. Oxford University Press, Oxford (2000)

    Google Scholar 

  5. Sweet, D.V. (ed.): Atlanta, Georgia, Registry of Toxic Effects of Chemical Substances 2, 186 (1986)

  6. Vani Latha, S., Little Flower, G., Rayapa Reddy, K., Nageswara Rao, C.V., Ratnakar, A.: Exploration of volumetric, acoustic, thermodynamic and IR studies of binary mixtures of green solvent ethyl lactate with C3 alkanols at T = (303.15, 308.15, 313.15 and 318.15) K and atmospheric pressure. J. Mol. Liq. 209, 153–160 (2015)

    Article  CAS  Google Scholar 

  7. Takemura, K., Ajiro, H., Fujiwara, T., Akashi, M.: A novel substrate for testosterone: biodegradable and biocompatible oil gel. Polym. J. 47, 460–463 (2015)

    Article  CAS  Google Scholar 

  8. Shaikh, A.A., Sivaram, S.: Organic carbonates. Chem. Rev. 96, 951–976 (1996)

    Article  CAS  Google Scholar 

  9. Ma, J., Zhang, M., Lu, L., Yin, X., Chen, J., Jiang, Z.: Intensifying esterification reaction between lactic acid and ethanol by pervaporation dehydration using chitosan–TEOS hybrid membranes. Chem. Eng. J. 155, 800–809 (2009)

    Article  CAS  Google Scholar 

  10. Romano, U., Rivetti, F.: U.S. Patent 4,318,862 (1979)

  11. Wen, Y., Zhang, R., Cang, Y., Zhang, J., Liu, L., Guo, X., Fan, B.: Direct synthesis of dimethyl carbonate and propylene glycol using potassium bicarbonate as catalyst in supercritical CO2. Polish J. Chem. Technol. 17, 62–65 (2015)

    Article  CAS  Google Scholar 

  12. Food and Drug Administration Department of Health and Human Services, The Code of Federal Regulations, Title 21, Food and Drugs. Government Printing Office, Washington, D.C. (2005)

  13. Hernandez, E.J., Luna, P., Stateva, R.P., Najdanovic-Visak, V., Reglero, G., Fornari, T.: Liquid–liquid phase transition of mixtures comprising squalene, olive oil, and ethyl lactate: application to recover squalene from oil deodorizer distillates. J. Chem. Eng. Data 56, 2148–2152 (2011)

    Article  CAS  Google Scholar 

  14. Strati, I.F., Oreopoulou, V.: Effect of extraction parameters on the carotenoid recovery from tomato waste. Int. J. Food Sci. Technol. 46, 23–29 (2011)

    Article  CAS  Google Scholar 

  15. Memoli, S., Selva, M., Tundo, P.: Dimethyl carbonate for eco-friendly methylation reactions. Chemosphere 43, 115–121 (2001)

    Article  CAS  Google Scholar 

  16. Ballini, R., Fiorini, D., Maggi, R., Righi, P., Sartori, G., Sartorio, R.: TBD-catalysed solvent less synthesis of symmetrically N,N′-substituted ureas from primary amines and diethyl carbonate. Green Chem. 5, 396–398 (2003)

    Article  CAS  Google Scholar 

  17. Pacheco, M.A., Marshall, C.L.: Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels 11, 2–29 (1997)

    Article  CAS  Google Scholar 

  18. Ancillotti, F., Fattore, V.: Oxygenate fuels: market expansion and catalytic aspect of synthesis. Fuel Process. Technol. 57, 163–194 (1998)

    Article  CAS  Google Scholar 

  19. Donald, A.B., John, E.H.: Synthesis of polycarbonate from dialkyl carbonate and bis phenol diester. US Patent 4452968 (1984)

  20. Yuvaraj, S., Balasubramanian, V.V., Palanichamy, M.: N-Ethylation of aniline with ethanol or diethyl carbonate over alkali and alkaline zeolites Y and b. Appl. Catal. A Gener. 176, 111–117 (1999)

    Article  CAS  Google Scholar 

  21. Clements, J.H.: Reactive Applications of Cyclic Alkylene Carbonates. Huntsman Petrochemical Corporation, 7114 North Lamar Boulevard, Austin, Texas 78752 (2003)

  22. Venkatasetty, H.V. (ed.): Lithium Battery Technology. John Wiley, New York (1984)

    Google Scholar 

  23. Naejus, R., Coudert, R., Willmann, P., Lemordant, D.: Ion solvation in carbonate-based lithium battery electrolyte solutions. Electrochim. Acta 43, 275–284 (1998)

    Article  CAS  Google Scholar 

  24. Wakihara, M., Yamamoto, O.: Lithium Ion Batteries: Fundamentals and Performance. Kodansha Ltd., Tokyo (1998)

    Book  Google Scholar 

  25. Muhuri, P.K., Hazra, D.K.: Electrical conductances for some tetraalkylammonium bromides, lithium tetrafluoroborate and tetrabutylammonium tetrabutylborate in propylene carbonate at 25 °C. J. Chem. Soc. Faraday Trans. 87, 3511–3513 (1991)

    Article  CAS  Google Scholar 

  26. Chen, J.T., Chu, H.P.: Densities and viscosities for binary mixtures of ethyl lactate with methacrylic acid, benzyl methacrylate, and 2-hydroxyethyl methacrylate at (298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 52, 650–654 (2007)

    Article  CAS  Google Scholar 

  27. Bajic, D.M., Zivkovic, E.M., Jovanovic, J., Serbanovic, S.P., Kijevcanin, M.L.J.: Experimental measurements and modelling of volumetric properties, refractive index and viscosity of binary systems of ethyl lactate with methyl ethyl ketone, toluene and n-methyl-2-pirrolidone at 288.15 to 323.15 K and atmospheric pressure. New UNIFAC-VISCO and ASOG-VISCO interaction parameters. Fluid Phase Equilib. 399, 50–65 (2015)

    Article  CAS  Google Scholar 

  28. Anila, P., Rayapa Reddy, K., Srinivasa Rao, G., Sairam, P.V.S., Ramachandran, D., Rambabu, C.: Densities, speed of sound, and IR studies of ethyl lactate with 2-alkoxyethanols at different temperatures. Thermochim. Acta 620, 1–9 (2015)

    Article  CAS  Google Scholar 

  29. Resa, J.M., Cepeda, E.A., Goenaga, J.M., Ramos, A.L., Aguirre, S., Urbano, C.: Density, refractive index, speed of sound at 298.15 K, and vapor–liquid equilibrium at 101.3 kPa for binary mixtures of methanol + ethyl lactate and 1-propanol + ethyl lactate. J. Chem. Eng. Data 55, 1017–1021 (2010)

    Article  CAS  Google Scholar 

  30. Resa, J.M., Goenaga, J.M., Ruiz, A.I.S.: Density, refractive index, speed of sound at 298.15 K, and vapor–liquid equilibria at 101.3 kPa for binary mixtures of ethyl acetate + ethyl lactate and methyl acetate + ethyl lactate. J. Chem. Eng. Data 51, 1294–1299 (2006)

    Article  CAS  Google Scholar 

  31. Garcia, G., Atilhan, M., Aparicio, S.: Insights into alkyl lactate + water mixed fluids. J. Mol. Liq. 199, 215–223 (2014)

    Article  CAS  Google Scholar 

  32. Aparicio, S., Alcalde, R.: Insights into the ethyl lactate + water mixed solvent. J. Phys. Chem. B 113, 14257–14269 (2009)

    Article  CAS  Google Scholar 

  33. Bajic, D.M., Zivkovic, E.M., Jovanovic, J., Serbanovic, S.P., Kijevcanin, M.L.J.: Volumetric and viscometric behavior of the binary systems ethyl lactate + 1,2-propanediol, + 1,3-propanediol, + tetrahydrofuran and + tetraethylene glycol dimethyl ether. New UNIFAC-VISCO & ASOG-VISCO parameters determination. Fluid Phase Equilib. 373, 1–19 (2014)

    Article  Google Scholar 

  34. Riddick, J.A., Bunger, W.B., Sakano, T.K.: Organic Solvents, Physical Properties and Methods of Purification. Techniques of Chemistry, 4th edn, Vol. II. Wiley, New York (1986)

  35. Bajic, D.M., Zivkovic, E.M., Jovanovic, J., Serbanovic, S.P., Kijevcanin, M.L.J.: Experimental measurements and modelling of volumetric properties, refractive index and viscosity of binary systems of ethyl lactate with methyl ethyl ketone, toluene and n-methyl-2-pirrolidone at 288.15 to 323.15 K and atmospheric pressure. New UNIFAC-VISCO and ASOG-VISCO interaction parameters. Fluid Phase Equilib. 399, 50–65 (2015)

    Article  CAS  Google Scholar 

  36. Yaws, C.L.: The Handbook of Thermodynamic and Physical Properties of Chemical Compounds. Gulf Oublications, Houston (2007)

    Google Scholar 

  37. Pereiro, A.B., Rodriguez, A., Canosa, J., Tojo, J.: Density, viscosity, and speed of sound of dialkyl carbonates with cyclopentane and methyl cyclohexane at several temperatures. J. Chem. Eng. Data 49, 1392–1399 (2004)

    Article  CAS  Google Scholar 

  38. Yang, C., Xu, W., MA, P.: Excess molar volumes and viscosities of binary mixtures of dimethyl carbonate with chlorobenzene, hexane, and heptane from (293.15 to 353.15) K and at atmospheric pressure. J. Chem. Eng. Data 49, 1802–1808 (2004)

    Article  CAS  Google Scholar 

  39. Romano, E., Trenzado, J.L., Gonzalez, E., Matos, J.S., Segade, L., Jimnez, E.: Thermophysical properties of four binary dimethyl carbonate + 1-alcohol systems at 288.15–313.15 K. Fluid Phase Equilib. 211, 219–240 (2003)

    Article  CAS  Google Scholar 

  40. Pardo, J.M., Tovar, C.A., Cerdeirina, C.A., Carballo, E., Romani, L.: Excess molar volumes and excess molar heat capacities of (dimethyl carbonate, or diethyl carbonate + n-heptane) at several temperatures. J. Chem. Thermodyn. 31, 787–796 (1999)

    Article  CAS  Google Scholar 

  41. Pal, A., Kumar, A.L.: Excess molar volumes, viscosities, and refractive indices of diethylene glycol dimethyl ether with dimethyl carbonate, diethyl carbonate, and propylene carbonate at (298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 43, 143–147 (1998)

    Article  CAS  Google Scholar 

  42. Pardo, J.M., Tovar, C.A., Carballo, T.J., Romani, L.: Thermodynamic behaviour of the binary systems dimethyl carbonate plus n-octane or n-nonane. Thermochim. Acta 433, 128–133 (2005)

    Article  CAS  Google Scholar 

  43. Rodriguez, A., Canosa, J., Tojo, J.: Physical properties of binary mixtures (dimethyl carbonate + alcohols) at several temperatures. J. Chem. Eng. Data 46, 1476–1486 (2001)

    Article  CAS  Google Scholar 

  44. Comelli, F., Bigi, A., Vitalini, D., Rubini, K.: Densities, viscosities, refractive indices, and heat capacities of poly(ethylene glycol-ran-propylene glycol) + esters of carbonic acid at (293.15 and 313.15) K and at atmospheric pressure. J. Chem. Eng. Data 55, 205–210 (2010)

    Article  CAS  Google Scholar 

  45. Wisniak, J., Cortez, G., Peralta, R.D., Infante, R., Elizalde, L.E., Amaro, T.A., Garcia, O., Soto, H.: Density, excess volume, and excess coefficient of thermal expansion of the binary systems of dimethyl carbonate with butyl methacrylate, allyl methacrylate, styrene, and vinyl acetate at T = (293.15, 303.15, and 313.15) K. J. Chem. Thermodyn. 40, 1671–1683 (2008)

    Article  CAS  Google Scholar 

  46. Lugo, L., Comunas, M.J.P., Lopez, E.R., Fernandez, J.: (p, V m, T, x) measurements of dimethyl carbonate + octane binary mixtures I. Experimental results, isothermal compressibilities, isobaric expansivities and internal pressures. Fluid Phase Equilib. 186, 235–255 (2001)

    Article  CAS  Google Scholar 

  47. Srilakshmi, M., Srinivasa Krishna, T., Narendra, K., Dey, R., Ratnakar, A.: Influence of alkyl group and temperature on excess thermodynamic properties of diethyl carbonate and their binary mixtures at 0.1 MPa. J. Mol. Liq. 211, 854–867 (2015)

    Article  CAS  Google Scholar 

  48. Wilhelm, E., Jimenez, E., Desgranges, G.R., Grolier, J.-P.E.: Excess molar heat capacities and excess molar volumes of some mixtures of propylene carbonate with aromatic hydrocarbons. J. Solution Chem. 20, 17–28 (1991)

    Article  CAS  Google Scholar 

  49. Comunas, M.J.P., Baylaucq, A., Boned, C., Fernandez, J.: High-pressure measurements of the viscosity and density of two polyethers and two dialkyl carbonates. Int. J. Thermophys. 22, 749–768 (2001)

    Article  CAS  Google Scholar 

  50. Rodriguez, A., Canosa, J., Tojo, J.: Physical properties of the binary mixtures (diethyl carbonate + hexane, heptane, octane and cyclohexane) from T = 293.15 K to T = 313.15 K. J. Chem. Thermodyn. 35, 1321–1333 (2003)

    Article  CAS  Google Scholar 

  51. Rivas, M.A., Pereira, S.M., Benerji, N., Iglesias, T.P.: Permittivity and density of binary systems of dimethyl or diethyl carbonate + n-dodecane from T = (288.15–328.15) K. J. Chem. Thermodyn. 36, 183–191 (2004)

    Article  CAS  Google Scholar 

  52. Lopez, E.R., Lugo, L., Comunas, M.J.P., Garcia, J., Fernandez, J.: Temperature dependence of the excess molar volume of (dimethyl carbonate, or diethyl carbonate + toluene) from T = 278.15 K to 323.15 K. J. Chem. Thermodyn. 32, 743–754 (2000)

    Article  CAS  Google Scholar 

  53. Nain, A.K.: Prakash Chandra, Pandey, J.D., Gopal, S.: l Densities, refractive indices, and excess properties of binary mixtures of 1,4-dioxane with benzene, toluene, o-xylene, m-xylene, p-xylene, and mesitylene at temperatures from (288.15 to 318.15) K. J. Chem. Eng. Data 53, 2654–2665 (2008)

    Article  CAS  Google Scholar 

  54. Wankhede, D.S., Wankhede, N.N., Lande, M.K., Arbad, B.R.: Ultrasonic velocities and refractive indices of binary mixtures of propylene carbonate + n-alkanols. Indian J. Pure Appl. Phys. 44, 909–916 (2006)

    CAS  Google Scholar 

  55. Wankhede, D.S., Lande, M.K., Arbad, B.R.: Densities and viscosities of binary mixtures of paraldehyde + propylene carbonate at (288.15, 293.15, 298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 50, 261–263 (2005)

    Article  CAS  Google Scholar 

  56. Moumouzlas, G., Panopoulos, D.K., Ritzoulls, G.: Excess properties of the binary liquid system propylene carbonate + acetonitrile. J. Chem. Eng. Data 36, 20–23 (1991)

    Article  Google Scholar 

  57. Comelli, F., Francesconi, R., Bigi, A., Rubini, K.: Excess molar enthalpies, molar heat capacities, densities, viscosities, and refractive indices of dimethyl sulfoxide + esters of carbonic acid at 308.15 K and atmospheric pressure. J. Chem. Eng. Data 51, 665–670 (2006)

    Article  CAS  Google Scholar 

  58. Muhuri, P.K., Hazra, D.K.: Density and viscosity of propylene carbonate + 2-methoxyethanol at 298.15, 308.15, and 318.15 K. J. Chem. Eng. Data 40, 582–585 (1995)

    Article  CAS  Google Scholar 

  59. Naejus, R., Lemordant, D., Coudert, R., Willmann, P.: Excess thermodynamic properties of binary mixtures containing linear or cyclic carbonates as solvents at the temperatures 298.15 and 315.15 K. J. Chem. Thermodyn. 29, 1503–1515 (1997)

    Article  CAS  Google Scholar 

  60. Benson, G.C., Kiyohara, O.: Evaluation of excess isentropic compressibilities and isochoric heat capacities. J. Chem. Thermodyn. 11, 1061–1064 (1979)

    Article  CAS  Google Scholar 

  61. Reddy, M.S., Nayeem, S.M., Raju, K.T.S.S., Srinivasa Rao, V., Hari Babu, B.: The study of solute–solvent interactions in 1-ethyl-3-methylimidazolium ethylsulfate + 2-ethoxyethanol from density, speed of sound and refractive index measurements. J. Mol. Liq. 218, 83–94 (2016)

    Article  Google Scholar 

  62. Redlich, O., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)

    Article  Google Scholar 

  63. Bski, E.Z., Dzida, M., Piotrowska, M.: Study of the acoustic and thermodynamic properties of 1,2- and 1,3-propanediol by means of high-pressure speed of sound measurements at temperatures from (293 to 318) K and pressures up to 101 MPa. J. Chem. Eng. Data 53, 136–144 (2008)

    Article  Google Scholar 

  64. Li Xu, G., Lin, X., Wang, Lin, R.: Densities volumetric properties of 2-chloroethanol with N,N-dimethylfarmamide and water at different temperatures. J. Mol. Liq. 123, 130–133 (2008)

  65. Aparicio, S., Halajian, S., Alcalde, R., Garcia, B., Leal, J.M.: Liquid structure of ethyl lactate, pure and water mixed, as seen by dielectric spectroscopy, solvatochromic and thermophysical studies. Chem. Phys. Lett. 454, 49–55 (2008)

    Article  CAS  Google Scholar 

  66. Alcalde, R., Atilhan, M., Trenzado, J.L., Aparicio, S.: Physicochemical insights on alkylcarbonate–alkanol solutions. J. Phys. Chem. B 120, 5015–5028 (2016)

    Article  CAS  Google Scholar 

  67. Garcia, G., Trenzado, J.L., Alcalde, R., Rodriguez, A.D., Atilhan, M., Aparicio, S.: Structure of alkylcarbonate + n-alkane mixed fluids. J. Phys. Chem. B 118, 11310–11322 (2014)

    Article  CAS  Google Scholar 

  68. Djordjevic, B.D., Kijevcanin, M.L.J., Radovic, I.R., Serbanovic, S.P., Tasic, A.Z.: Physical, chemical and structural effects as important factors for the determination of thermodynamic and transport properties and the modelling of non-electrolyte solutions. J. Serb. Chem. Soc. 78, 2201–2214 (2013)

    Article  CAS  Google Scholar 

  69. Pal, A., Dass, G., Kumar, A.: Excess molar volumes, viscosities, and refractive indices of tetraethylene glycol dimethyl ether + dimethyl carbonate, + diethyl carbonate, and + propylene carbonate at 298.15 K. J. Chem. Eng. Data 44, 2–5 (1999)

    Article  CAS  Google Scholar 

  70. Ali, A., Nain, A.K.: Study of intermolecular interactions in binary mixture of formamide with 2-propanol, 1,2-propanediol and 1,2,3-propanetriol. Indian J. Pure Appl. Phys. 39, 421–427 (2001)

    CAS  Google Scholar 

  71. Pal, A., Dass, G., Kumar, A.: Excess molar volumes, viscosities, and refractive indices of triethylene glycol dimethyl ether with dimethyl carbonate, diethyl carbonate, and propylene carbonate at 298.15 K. J. Chem. Eng. Data 43, 738–741 (1998)

    Article  CAS  Google Scholar 

  72. Francesconi, R., Comelli, F.: Excess molar enthalpies, densities, and excess molar volumes of binary mixtures containing esters of carbonic acid at 298.15 and 313.15 K. J. Chem. Eng. Data 40, 811–814 (1996)

    Article  Google Scholar 

  73. Desnoyers, J.E., Perron, G.: Treatment of excess thermodynamic quantities for liquid mixtures. J. Solution Chem. 26, 749–755 (1997)

    Article  CAS  Google Scholar 

  74. Das, D., Barhoumi, Z., Dhouibi, N., Sanhoury, M.A.M.K., Ouerfelli, N.: The reduced Redlich–Kister equations for correlating volumetric and viscometric properties of N,N-dimethylacetamide + dimethylformamide binary mixtures at temperatures from 298.15 to 318.15 K. Phys. Chem. Liq. 50, 712–734 (2012)

    Article  CAS  Google Scholar 

  75. Das, D., Messaadi, A., Dhouibi, N., Ouerfelli, N.: Investigations of the reduced Redlich–Kister equations for correlating excess properties of N,N-dimethylacetamide + 2-ethoxyethanol binary mixtures at temperatures from 298.15 to 318.15 K. Phys. Chem. Liq. 50, 773–797 (2012)

    Article  CAS  Google Scholar 

  76. Pandey, P.K., Anjali, A., Aasheesh, A.: Intermolecular interactions in ternary system of 2-dimethylaminoethanol methanol + ethanol at various temperatures: ultrasonic, volumetric and IR study. Phys. Chem. Liq. 52, 416–427 (2014)

    Article  CAS  Google Scholar 

  77. Reddy, K.R., Rao, G.S., Rambabu, C.: Thermo physical properties and IR spectra of 2-chloroethanol and 2-phenylethanol in N-methyl-2-pyrrolidone at different temperatures and 101.3 kPa. Phys. Chem. Liq. 54, 589–601 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Vani Latha or A. Ratnakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vani Latha, S., Little Flower, G., Rayapa Reddy, K. et al. Densities, Ultrasonic Velocities, Excess Properties and IR Spectra of Binary Liquid Mixtures of Organic Esters (Ethyl Lactate, Some Organic Carbonates). J Solution Chem 46, 305–330 (2017). https://doi.org/10.1007/s10953-016-0567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0567-6

Keywords

Navigation