Skip to main content
Log in

The Solubilities of Gibbsite and Bayerite Below 100 °C in Near Neutral to Basic Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The purpose of this paper is to present a new set of experimental results on the solubility of crystalline bayerite and gibbsite in caustic NaNO3 media (I m  = 0.1–5 mol·kg−1) from 303 to 363 K, reflecting conditions in the high-level nuclear waste repository at the Hanford site in the USA. The resulting molal solubility constants, K m,s,4, were combined with some previous literature values and modeled using the SIT and Pitzer ion-interaction models in order to provide a coherent internally-consistent set of data quantifying the thermodynamic dissolution behavior of these aluminum phases. The two models led to similar thermodynamic quantities compatible with those from previous studies for bayerite and gibbsite, and in both cases the differences in the ion-interaction parameters could be taken as being temperature independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The phase designators used in this paper are not necessarily the same as used in other publications.

References

  1. Bénézeth, P., Palmer, D.A., Anovitz, L.M., Horita, J.: Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: implications for mineral trapping of CO2. Geochim. Cosmochim. Acta 71, 4438–4455 (2007)

    Article  Google Scholar 

  2. Rat’ko, A.I., Kuznetsova, T.F., Romanenkov, V.E., Klevchenya, D.I.: Kinetics of bayerite microstructure formation from powdered aluminum. Colloid J. 70, 210–214 (2008)

    Article  Google Scholar 

  3. Kloprogge, J.T., Duong, L.C., Wood, B.J., Frost, R.L.: XPS study of the major minerals in bauxite: gibbsite, bayerite and (pseudo)boehmite. J. Colloid Interface Sci. 296, 572–576 (2006)

    Article  CAS  Google Scholar 

  4. Rodgers, K.A., Gregory, M.R., Barton, R.: Bayerite, nordstrandite, gibbsite, brucite and pseudoboehmite in discharged caustic waste from Campbell Island, southwest Pacific. Clay Clay Miner. 39, 103–107 (1991)

    Article  CAS  Google Scholar 

  5. Huneke, J.T., Cramer, R.E., Alvarez, R., El-Swaify, S.A.: The identification of gibbsite and bayerite by laser Raman spectroscopy. Soil Sci. Soc. Am. J. 44, 131–134 (1980)

    Article  CAS  Google Scholar 

  6. Ruan, H.D., Frost, R.L., Kloprogge, J.T.: Comparison of Raman spectra in characterizing gibbsite, bayerite, diaspore and boehmite. J. Raman Spectrosc. 32, 745–750 (2001)

    Article  CAS  Google Scholar 

  7. Ashbrook, S.E., MacKenzie, K.J., Wimperis, S.: 27Al multiple quantum MSA NMR of mechanically treated bayerite (alpha-Al(OH)3) and silica mixtures. Solid State Nucl. Magn. Reson. 20, 87–99 (2001)

    Article  CAS  Google Scholar 

  8. Pethrick, R.A., Hayward, D., Jeffrey, K., Affrossman, S.: Investigation of the hydration and dehydration of aluminum oxide-hydroxide using high frequency dielectric measurements between 300 kHz–3 GHz. J. Mater. Sci. 31, 2623–2629 (1995)

    Article  Google Scholar 

  9. Peskleway, C.D., Henderson, G.J., Wicks, F.J.: Growth of nordstrandite: effect of chloride on surface morphology. J. Cryst. Growth 273, 614–623 (2005)

    Article  CAS  Google Scholar 

  10. Sipos, P., Byrne, L., Hefter, G., May, P.M.: A hydrogen electrode study of concentrated alkaline aluminate solutions. Aust. J. Chem. 51, 445–453 (1998)

    Article  CAS  Google Scholar 

  11. Apps, J.A., Neil, J.M., Jun, C.H.: Thermochemical properties of gibbsite, bayerite, boehmite, diaspore, and the aluminate ion between 0 and 350 °C. Lawrence Berkeley Laboratory Report 21482 (1989)

  12. Russell, A.S., Edwards, J.D., Taylor, C.S.: Solubility and density of hydrated aluminas in NaOH solutions. J. Metals 7, 1123–1128 (1955)

    CAS  Google Scholar 

  13. Wesolowski, D.J.: Aluminum speciation and equilibria in aqueous solution: I. The solubility of gibbsite in the system Na–K–Cl–OH–Al(OH)4 from 0–100 °C. Geochim. Cosmochim. Acta 56, 1065–1092 (1992)

    Article  CAS  Google Scholar 

  14. Fricke, R.: Über das kristallinsche Tonerdehydrat v. Bonsdorff’s. Zeit. Anorg. Allgem. Chem. 175, 249–256 (1928). (in German)

    Article  CAS  Google Scholar 

  15. Fricke, R., Jucaitis, P.: Untersuchungen űber die Gleichgewichte in den Systemen Al2O3·Na2O·H2O and Al2O3·K2O·H2O. Z. Anorg. Allgem. Chem. 191, 129–149 (1930)

    Article  CAS  Google Scholar 

  16. Kuznetsov, S.J.: Equilibrium constants of the reaction Al(OH)3 + OH = Al(OH) 4 . Zh. Prikl. Khim. 25, 748–751 (1952). (in Russian)

    CAS  Google Scholar 

  17. Verdes, G., Gout, R., Castet, S.: Thermodynamic properties of the aluminate ion and of bayerite, boehmite, diaspore and gibbsite. Eur. J. Min. 4, 767–792 (1992)

    Article  CAS  Google Scholar 

  18. Fulda, W., Ginsberg, H.: Tonerde und Aluminium. Teil 1, Die Tonerde, pp. 30–32. Walter de Gruyter & Co., Berlin (1951)

  19. Ikkatai, T., Okada, N.: Viscosity, specific gravity, and equilibrium concentration of sodium aluminate solutions. In: Gerard, G., Stroup, P.T. (eds.) International Symposium of the Extractive Metallurgy of Aluminum, vol. 1, pp. 159–173. Interscience Publishers, Alumina (1963)

    Google Scholar 

  20. Lyapunov, A.N., Khodakova, A.G., Galkina, Z.G.: Solubility of hydrargillite in NaOH solutions, containing soda or sodium chloride, at 60 °C and 95 °C. Tsvetnye Met. (Engl. Transl.) 5, 48–51 (1964)

    Google Scholar 

  21. Szita, L., Berecz, E.: NaOH-Al(OH)3(hidrargillit)-H2O rendszer vizsgálata elektrokémiai úton. Báyászati és Kohászati Lapok, Kohásazat 103, 37–43 (1970). (in Hungarian)

    CAS  Google Scholar 

  22. Fricke, R.: Einige Gesichtspunkte zu den Wandlungen der Oxyhydrate. Kolloid Z. 49, 229–243 (1929). (in German)

    Article  CAS  Google Scholar 

  23. Hermann, E., Stipetić, J.: Der “Ausrührvorgang” von Tonerdehydrat nach Bayer als Keimbildungsproblem. Z. Anorg. Chem. 262, 258–287 (1950). (in German)

    Article  Google Scholar 

  24. Christyakova, A.A.: Some data on the system Na2O–Al2O3–H2O. Tsvetnyye Mettaly 37, 58–63 (1964)

    Google Scholar 

  25. Lyapunov, A.N., Kryzhanovskii, M.M., Grigor’eva, G.N., Medvedeva, V.I., Varzina, A.G.: Increasing the decomposition rate and improving the quality of aluminum hydroxide. Tsvetnye Metally (Engl. Transl.) 36–39 (1973)

  26. Sanjuan, B., Michard, G.: Aluminum hydroxide solubility in aqueous solutions containing fluoride ions at 50 °C. Geochim. Cosmochim. Acta 51, 1823–1831 (1987)

    Article  CAS  Google Scholar 

  27. Verdes, G., Gout, R.: Réhydratation d’oxydes d’aluminium amorphes. Application à l’étude de l’équilibre boehmite–bayérit. Bull. Min. 110, 579–587 (1987). (in French)

    CAS  Google Scholar 

  28. Ciavatta, L.: The specific interaction theory in evaluating equilibria. Ann. Chim. (Rome) 70, 551–567 (1980)

    CAS  Google Scholar 

  29. Hovey, J.K., Hepler, L.G., Tremaine, P.R.: Thermodynamic properties of aqueous aluminate ion: standard partial molar heat capacities and volumes of Al(OH) 4 from 10 to 55 °C. J. Phys. Chem. 92, 1323–1332 (1988)

    Article  CAS  Google Scholar 

  30. Chen, Q., Xu, Y., Hepler, L.G.: Calorimetric study of the digestion of gibbsite, Al(OH)3(cr), and thermodynamics of aqueous aluminate, Al(OH) 4 (aq). Can. J. Chem. 69, 1685–1690 (1991)

    Article  CAS  Google Scholar 

  31. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)

    Article  CAS  Google Scholar 

  32. Pitzer, K.S., Kim, J.J.: Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96, 5701–5707 (1974)

    Article  CAS  Google Scholar 

  33. Hemmingway, B.S., Robie, R.A., Fisher, J.R., Wilson, W.H.: Heat capacities of gibbsite, Al(OH)3, between 13 and 480 K, and magnesite, MgCO3, between 13 and 380 K and their standard entropies at 298.15 K, and the heat capacities of calorimetry conference benzoic acid between 12 and 316 K. J. Res. U.S. Geol. Surv. 5, 797–806 (1977)

    Google Scholar 

  34. Caiani, P., Conti, G., Gianni, P., Matteoli, E.: Apparent molar heat capacity and relative enthalpy of aqueous sodium hydroxoaluminate between 323 and 523 K. J. Solution Chem. 18, 447–461 (1989)

    Article  CAS  Google Scholar 

  35. Weber, C.F.: Thermodynamic modeling of Savannah River evaporators. Oak Ridge National Laboratory Report ORNL/TM-2001/102 (2001)

  36. Gross, P., Christie, J., Hayman, C.: Heats of formation of gibbsite and light element double oxides. Fulmer Research Institute Ltd., Stoke Poges (Buckinghamshire, England), Scientific report no. 6, R.163/SR/6/(July 1970)

  37. Hemingway, B.S., Robie, R.A., Fisher, J.R., Wilson, W.H.: Enthalpies of formation of low albite (NaAlSi3O8), gibbsite (Al(OH)3), and NaAlO2; revised values for Δf (298 K) and Δf (298 K) of some aluminosilicate minerals. J. Res. U.S. Geol. Surv. 5, 413–429 (1977)

    CAS  Google Scholar 

  38. Johnson, G.K., Tasker, I.R., Flotow, H.E., O’Hare, P.A.G., Wise, W.S.: Thermodynamic studies of mordenite, dehydrated mordenite, and gibbsite. Am. Miner. 77, 85–93 (1992)

    CAS  Google Scholar 

  39. Chen, Q., Zeng, W.: Calorimetric determination of the standard enthalpies of formation of gibbsite, Al(OH)3(cr), and boehmite, AlOOH(cr). Geochim. Cosmochim. Acta 60, 1–5 (1996)

    Article  CAS  Google Scholar 

  40. Rand, M.H., Fuger, J., Gadja, T., Palmer, D.A.: Chemical thermodynamics. Ancillary Data, OECD Nuclear Energy Agency Data Bank eds. OECD Publications, Paris, France (in press)

  41. Fricke, R., Wullhorst, B.: Die Energiedifferenzen verschiedener Modifikationen kristallisierten Hydroxyde von Beryllium und Aluminium und die Bildungswärmen von kristallisiertem Zink- und Berylliumhydroxyde. Z. Anorg. Allg. Chem. 205, 127–144 (1932). (in German)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald A. Palmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bénézeth, P., Hilic, S. & Palmer, D.A. The Solubilities of Gibbsite and Bayerite Below 100 °C in Near Neutral to Basic Solutions. J Solution Chem 45, 1288–1302 (2016). https://doi.org/10.1007/s10953-016-0470-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0470-1

Keywords

Navigation