Skip to main content
Log in

Experimental Determination of Solubilities of Brucite [Mg(OH)2(cr)] in Na2SO4 Solutions with Borate to High Ionic Strengths: Interactions of MgB(OH) +4 with Na2SO4

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this work, a solubility study on brucite [Mg(OH)2(cr)] in Na2SO4 solutions ranging from 0.01 to 1.8 mol·kg−1, with 0.001 mol·kg−1 borate, has been conducted at 22.5 °C. Based on the solubility data, the Pitzer interaction parameters for MgB(OH) +4  − SO 2−4 and MgB(OH) +4  − Na+ along with the formation constant for MgSO4(aq) are evaluated using the Pitzer model. The formation constant (\( \log_{10} \beta_{1}^{0} \)  = 2.38 ± 0.08) for MgSO4(aq) at 25 °C and infinite dilution obtained in this study is in excellent agreement with the literature values. The experimental data on the solubility of gypsum (CaSO4·2H2O), at 25 °C, in aqueous solutions of MgSO4 with ionic strengths up to ~ 11 mol·kg−1 were analyzed using models with and without considering the MgSO4(aq) species. The model incorporating MgSO4(aq) fits better to the experimental data than the model without MgSO4(aq), especially in the ionic strength range beyond ~ 4 mol·kg−1, demonstrating the need for incorporation of MgSO4(aq) into the model to improve the accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xiong, Y.-L., Lord, A.C.: Experimental investigations of the reaction path in the MgO–CO2–H2O system in solutions with various ionic strengths, and their applications to nuclear waste isolation. Appl. Geochem. 23, 1634–1659 (2008)

    Article  CAS  Google Scholar 

  2. Krumhansl, J.L., Panenguth, H.W., Zhang, P.-C., Kelly, J.W., Anderson, H.L., Hardesty, J.O.: Behavior of MgO as a CO2 scavenger at the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico. Mater. Res. Soc. Symp. Proc. 608, 155–160 (2000)

    Article  CAS  Google Scholar 

  3. Schüssler, W., Metz, V., Kienzler, B., Vejmelka, P.: Geochemically based source term assessment for the Asse salt mine: comparison of modeling and experimental results (Abstract). Programs and Abstracts of Materials Research Society Annual Meeting at Boston, MA, p. 713 (2002)

  4. Schuessler, W., Kienzler, B., Wilhelm, S., Neck, V., Kim, J.I.: Modeling of near field actinide concentrations in radioactive waste repositories in salt formations: effect of buffer materials. Mater. Res. Soc. Symp. Proc. 663, 791 (2000)

    Article  Google Scholar 

  5. Guerrero, A., Goni, S., Hernandez, M.-S.: Thermodynamic solubility constant of Ca(OH)2 in simulated radioactive sulfate liquid waste. J. Am. Ceram. Soc. 83, 882 (2000)

    Article  CAS  Google Scholar 

  6. Moukwa, M.: Characteristics of the attack of cement paste by MgSO4 and MgCl2 from the pore structure measurements. Cem. Concr. Res. 20, 148–158 (1990)

    Article  CAS  Google Scholar 

  7. Gollop, R.S., Taylor, H.F.W.: Microstructural and microanalytical studies of sulfate attack. IV. Reactions of a slag cement paste with sodium and magnesium sulfate solutions. Cem. Concr. Res. 26, 1013–1028 (1996)

    Article  CAS  Google Scholar 

  8. Santhanam, M., Cohen, M.D., Olek, J.: Mechanism of sulfate attack: a fresh look Part 1: summary of experimental results. Cem. Concr. Res. 32, 915–921 (2001)

    Article  Google Scholar 

  9. Tumidajski, P.J., Chan, G.W.: Durability of high performance concrete in magnesium brine. Cem. Concr. Res. 26, 557–565 (1996)

    Article  CAS  Google Scholar 

  10. Battocchi, D., Simoes, A.M., Tallman, D.E., Bierwagen, G.P.: Comparison of testing solutions on the protection of Al-alloys using a Mg-rich primer. Corros. Sci. 48, 2226–2240 (2006)

    Article  CAS  Google Scholar 

  11. Yang, L.J., Wei, Y.H., Hou, L.F., Zhang, D.: Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions. Corros. Sci. 52, 345–351 (2010)

    Article  CAS  Google Scholar 

  12. Tian, Y., Yang, L.J., Li, Y.F., Wei, Y.H., Hou, L.F., Li, Y.G., Murakami, R.I.: Corrosion behaviour of die-cast AZ91D magnesium alloys in sodium sulphate solutions with different pH values. Trans. Nonferrous Met. Soc. China 21, 912–920 (2011)

    Article  CAS  Google Scholar 

  13. King, A.D., Kannan, B., Scully, J.R.: Environmental degradation of a Mg-rich primer in selected field and laboratory environments: part 1–without a topcoat. Corrosion 70, 512–535 (2014)

    Article  CAS  Google Scholar 

  14. Zeng, R.C., Hu, Y., Guan, S.K., Cui, H.Z., Han, E.H.: Corrosion of magnesium alloy AZ31: the influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution. Corros. Sci. 86, 171–182 (2014)

    Article  CAS  Google Scholar 

  15. Lin, J., Battocchi, D., Bierwagen, G.: Degradation of magnesium rich primers over AA2024-T3 during constant immersion in different solutions. Corrosion 73, 408–416 (2017)

    Article  CAS  Google Scholar 

  16. Xiong, Y.-L.: Thermodynamic properties of brucite determined by solubility studies and their significance to nuclear waste isolation. Aquat. Geochem. 14, 223–238 (2008)

    Article  CAS  Google Scholar 

  17. Wood, S.A., Palmer, D.A., Wesolowski, D.J., Bénézeth, P.: The aqueous geochemistry of the rare earth elements and yttrium. Part XI. The solubility of Nd(OH)3 and hydrolysis of Nd3+ from 30 to 290 °C at saturated water vapor pressure with in-situ pHm measurement. In: Hellmann, R., Wood, S.A. (eds.) Special Publication 7, pp. 229–256. The Geochemical Society (2002)

  18. Rai, D., Felmy, A.R., Juracich, S.I., Rao, F.F.: Estimating the Hydrogen Ion Concentration in Concentrated NaCl and Na2SO4 Electrolytes. SAND94-1949. Sandia National Laboratories, Albuquerque, NM (1995)

  19. Roselle, G.: Determination of pCH+ Correction Factors in Brines. Work Carried Out under the Analysis Plan for Determination of pCH+ Correction Factors in Brines, AP157, Rev 0. Sandia National Laboratories, Carlsbad, NM (2011)

  20. Xiong, Y.-L., Deng, H.-R., Nemer, M., Johnsen, S.: Experimental determination of the solubility constant for magnesium chloride hydroxide hydrate (Mg3Cl(OH)5·4H2O), phase 5) at room temperature, and its importance to nuclear waste isolation in geological repositories in salt formations. Geochim. Cosmochim. Acta 74, 4605–46011 (2010)

    Article  CAS  Google Scholar 

  21. Leito, I., Strauss, L., Koort, E., Pihl, V.: Estimation of uncertainty in routine pH measurement. Accred. Qual. Assur. 7, 242–249 (2002)

    Article  CAS  Google Scholar 

  22. McGee, K.A., Hostetler, P.B.: Activity-product constants of brucite from 10 to 90 °C. J. Res. US Geol. Surv. 5, 227–233 (1977)

    CAS  Google Scholar 

  23. Wolery, T.J., Xiong, Y.-L., Long, J.: Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0a for Actinide Chemistry, Document Version 8.10. Carlsbad, NM: Sandia National laboratories. ERMS 550239 (2010)

  24. Xiong, Y.-L.: WIPP Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0a for Actinide Chemistry, Revision 1, Document Version 8.20. Supersedes ERMS 550239. Carlsbad, NM. Sandia National Laboratories. ERMS 555358 (2011)

  25. Xiong, Y.-L., Kirkes, L., Westfall, T.: Experimental determination of solubilities of sodium tetraborate (borax) in NaCl solutions, and a thermodynamic model for the Na–B(OH)3–Cl–SO4 system to high ionic strengths at 25 °C. Am. Mineral. 98, 2030–2036 (2013)

    Article  CAS  Google Scholar 

  26. Xiong, Y.-L., Kirkes, L., Westfall, T., Roselle, R.: Experimental determination of solubilities of lead oxalate (PbC2O4(cr)) in a NaCl medium to high ionic strengths, and the importance of lead oxalate in low temperature environments. Chem. Geol. 342, 128–137 (2013)

    Article  CAS  Google Scholar 

  27. Xiong, Y.-L.: Experimental determination of lead carbonate solubility at high ionic strengths: a Pitzer model description. Monatsh. Chem. 146, 1433–1443 (2015)

    Article  CAS  Google Scholar 

  28. Xiong, Y.-L.: An aqueous thermodynamic model for solubility of potassium ferrate in alkaline solutions to high ionic strengths at 283.15 to 333.15 K. J. Solution Chem. 42, 1393–1403 (2013)

    Article  CAS  Google Scholar 

  29. Xiong, Y.-L.: A thermodynamic model for silica and aluminum in alkaline solutions with high ionic strength at elevated temperatures up to 100 °C: applications to zeolites. Am. Mineral. 98, 141–153 (2013)

    Article  CAS  Google Scholar 

  30. Xiong, Y.-L.: A Pitzer model for the Na–Al(OH)4–Cl–OH system and solubility of boehmite (AlOOH) to high ionic strength and to 250 °C. Chem. Geol. 373, 37–49 (2014)

    Article  CAS  Google Scholar 

  31. Xiong, Y.-L.: Release of EQ3/6 Database DATA0.FM1. Carlsbad, NM: Sandia National Laboratories. ERMS 555152 (2011)

  32. Harvie, C.E., Moller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: The Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25 °C. Geochim. Cosmochim. Acta 48, 723–751 (1984)

    Article  CAS  Google Scholar 

  33. Daly, F.P., Brown, C.W., Kester, D.R.: Sodium and magnesium sulfate ion pairing: evidence from Raman spectroscopy. J. Phys. Chem. 76, 3664–3668 (1972)

    Article  CAS  Google Scholar 

  34. Katayama, S.: Conductometric determination of ion-association constants for magnesium and nickel sulfates in aqueous solutions at various temperatures between 0 and 45 °C. Bull. Chem. Soc. Jpn 46, 106–109 (1973)

    Article  CAS  Google Scholar 

  35. Elgquist, B., Wedborg, M.: Stability of ion pairs from gypsum solubility degree of ion pair formation between the major constituents of seawater. Mar. Chem. 3, 215–225 (1975)

    Article  CAS  Google Scholar 

  36. Rudolph, W.W., Irmer, G., Hefter, G.: Raman spectroscopic investigation of speciation in MgSO4(aq). Phys. Chem. Chem. Phys. 5, 5253–5261 (2003)

    Article  CAS  Google Scholar 

  37. Nair, V.S.K., Nancollas, G.H.: Thermodynamics of ion association. Part IV. Magnesium and zinc sulphates. J. Chem. Soc. 3706–3710 (1958)

  38. Kester, D.R.: Ph.D. Thesis, Oregon State University, Corvallis (1969)

  39. Kratsis, S., Hefter, G., May, P.: Potentiometric study of the association of magnesium and sulfate ions at 25 °C in high ionic strength media. J. Solution Chem. 30, 19–29 (2001)

    Article  CAS  Google Scholar 

  40. Ostroff, A.G., Metler, A.V.: Solubility of calcium sulfate dihydrate in the system NaCl–MgCl2–H2O from 28 °C to 70 °C. J. Chem. Eng. Data 11, 346–350 (1966)

    Article  CAS  Google Scholar 

  41. Dietriech, H.G.: Kaminer Handbuch der Balneologie 1, 205 (1916)

    Google Scholar 

  42. Harkins, W.D., Paine, H.M.: Intermediate and complex ions. V. The solubility product and activity of the ions in bi-bivalent salts. J. Am. Chem. Soc. 41, 1155–1168 (1919)

    Article  CAS  Google Scholar 

  43. Kolosov, A.S.: Isotherms of the system MgSO4–CaSO4–H2O at 25 °C. Trudy Khim.-Met. Inst., Akad. Nauk S.S.S.R., Zapadno-Sibir. Filial 35, 29–38 (1958)

  44. Wollmann, G., Voigt, W.: Solubility of gypsum in MSO4 solutions (M = Mg, Mn Co, Ni, Cu, Zn) at 298.15 K and 313.15 K. J. Chem. Eng. Data 53, 1375–1380 (2008)

    Article  CAS  Google Scholar 

  45. Tanji, K.K.: Solubility of gypsum in aqueous electrolytes as affected by ion association and ionic strengths up to 0.15 M and at 25 deg. Environ. Sci. Technol. 3, 656–661 (1969)

    Article  CAS  Google Scholar 

  46. Friedel, B.: Gypsum solubilities in aqueous systems containing NaCl, MgCl2, Na2SO4, and MgSO4. Z. Pflanzenernahrung und Bodenkunde 141, 337–346 (1978)

    Article  CAS  Google Scholar 

  47. Domski, P.S.: Memo AP-173, EQ3/6 Database Update: DATA0.FM2. Carlsbad, NM, Sandia National Laboratories, ERMS 564914 (2015)

  48. Xiong, Y.-L., Domski, P.S.: Updating the WIPP Thermodynamic Database, Revision 1, Supersedes ERMS 565730. Carlsbad, NM: Sandia National Laboratories. ERMS 566047 (2016)

  49. Choppin, G.R., Bond, A.H., Borkowski, M., Bronikowski, M.G., Chen, J.-F., Lis, S., Mizera, J., Pokrovsky, O.S., Wall, N.A., Xia, Y.-X., Moore, R.C.: Waste isolation pilot plant actinide source term test program: solubility studies and development of modeling parameters. Sandia National Laboratories Report. SAND99-0943 (2001)

Download references

Acknowledgements

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by the WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy. SAND2017-13513J. The laboratory assistance from Lindsay Day, Diana Goulding, Brittany Hoard, Chase Kicker, Danelle Morrill, Cassandra Marrs, Rachael Roselle, Mathew Stroble, William Sullvan, Kira Vincent, and Yoni Xiong is gratefully acknowledged. The authors are grateful to the three journal reviewers for their insightful and thorough reviews, which have improved the presentation of the article, and to Dr. Magdalena Bendová, the journal editor, for her time and editorial efforts. The authors wish to thank Dr. Earle Waghorne, Editor-in-Chief, for his invitation to the first and senior author to contribute to the special issue of ISSP-17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongliang Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Kirkes, L. & Westfall, T. Experimental Determination of Solubilities of Brucite [Mg(OH)2(cr)] in Na2SO4 Solutions with Borate to High Ionic Strengths: Interactions of MgB(OH) +4 with Na2SO4. J Solution Chem 47, 595–610 (2018). https://doi.org/10.1007/s10953-018-0742-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0742-z

Keywords

Navigation