Skip to main content
Log in

β-Cyclodextrin Encapsulates Biochanin A and Influences its Binding to Bovine Serum Albumin: Alteration of the Binding Strength

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

We report the host–guest association of Biochanin A with β-cyclodextrin and the modulation of its binding by cyclodextrin to bovine serum albumin. The binding constant of the complex is large. The strength of the binding of Biochanin A to bovine serum albumin decreases when β-cyclodextrin complexes with it. The binding constants of the Biochanin–serum albumin binding in the absence and the presence of cyclodextrin are (2.23 ± 0.08) × 106 and (1.37 ± 0.05) × 106 mol−1·dm3, respectively. The FRET studies reveal the decrease in the distance between the donor and the acceptor in the presence of cyclodextrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thors, L., Burston, J.J., Alter, B.J., McKinney, M.K., Cravatt, B.F., Ross, R.A., Pertwee, R.G., Gereau 4th, R.W., Wiley, J.L., Fowler, C.J.: Biochanin A, a naturally occurring inhibitor of fatty acid amide hydrolase. Br. J. Pharmacol. 160, 549–560 (2010)

    Article  CAS  Google Scholar 

  2. Ko, W.-C., Lin, L.-H., Shen, H.-Y., Lai, C.-Y., Chen, C.-M., Shih, C.-H.: Biochanin A, a phytoestrogenic isoflavone with selective inhibition of phosphodiesterase 4, suppresses ovalbumin-induced airway hyper-responsiveness. Evid. Based Complement. Alternat. Med. (2011). doi:10.1155/2011/635058

    Google Scholar 

  3. Ariazi, E.A., Jordan, V.C.: Estrogen-related receptors as emerging targets in cancer and metabolic disorders. Curr. Top. Med. Chem. 6, 203–215 (2006)

    Article  CAS  Google Scholar 

  4. Moon, Y.J., Wang, X., Morris, M.E.: Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol. In Vitro 20, 187–210 (2006)

    Article  CAS  Google Scholar 

  5. Sun, X.-Y., Plouzek, C.A., Henty, J.P., Wang, T.T.Y., Phang, J.M.: Increased UDP–glucuronosyltransferase activity and decreased prostate specific antigen production by Biochanin A in prostate cancer cells. Cancer Res. 58, 2379–2384 (1998)

    CAS  Google Scholar 

  6. Peterson, T.G., Ji, G.P., Kirk, M., Coward, L., Falany, C.N., Barnes, S.: Metabolism of the isoflavones genistein and biochanin A in human breast cancer cell lines. Am. J. Clin. Nutrit. 68, 1505S–1511S (1998)

    CAS  Google Scholar 

  7. Wang, Y., Gho, W.M., Chan, F.L., Chen, S., Leung, L.K.: The red clover (Trifolium pratense) isoflavone biochanin A inhibits aromatase activity and expression. Br. J. Nutr. 99, 303–310 (2008)

    Article  CAS  Google Scholar 

  8. Johnson, T.L., Lai, M.B., Lai, J.C.K., Bhushan, A.: Inhibition of cell proliferation and MAP Kinase and Akt pathways in oral squamous cell carcinoma by Genistein and Biochanin A. Evid. Based Complement. Alternat. Med. 7, 351–358 (2010)

    Article  Google Scholar 

  9. Seo, Y.J., Kim, B.S., Chun, S.Y., Park, Y.K., Kang, K.S., Kwon, T.G.: Apoptotic effects of Genistein, Biochanin-A and Apigenin on LNCaP and PC-3 cells by p21 through transcriptional inhibition of polo-like kinase-1. Korean Med. Sci. 26, 1489–1494 (2011)

    Article  CAS  Google Scholar 

  10. Hur, H.G., Rafii, F.: Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol. Lett. 192, 21–25 (2000)

    Article  CAS  Google Scholar 

  11. Tseng, E., Liang, W., Morris, M.E.: Effect of flavonoids on P-glycoprotein mediated transport in a human breast cancer cell line, Poster presentation at the Annual Meeting of the American Association of Pharmaceutical Scientists. Pharm. Res. 3 (2001)

  12. Zang, S., Morris, M.E.: Effects of the flavonoids Biochanin A, Morin, Phloretin, and Silymarin on P-glycoprotein-mediated transport. J. Pharmacol. Exp. Ther. 304, 1258–1267 (2003)

    Article  Google Scholar 

  13. Peterson, T.G., Coward, L., Kirk, M., Falany, C.N., Barnes, S.: The role of metabolism in mammary epithelial cell growth inhibition by the isoflavones genistein and biochanin A. Carcinogenesis 17, 1861–1869 (1996)

    Article  CAS  Google Scholar 

  14. Yanagihara, K., Ito, A., Toge, T., Numoto, M.: Anti-proliferative effects of isoflavones on human cancer cell lines established from the gastrointestinal tract. Cancer Res. 53, 5815–5821 (1993)

    CAS  Google Scholar 

  15. Atkinson, C., Compston, J.E., Day, N.E., Dowsett, M., Bingham, S.A.: The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial. Am. J. Clin. Nutrit. 79, 326–333 (2004)

    CAS  Google Scholar 

  16. Lee, K.H., Cho, E.M.: Biochanin A stimulates osteoblastic differentiation and inhibits hydrogen peroxide-induced production of inflammatory mediators in MC3T3-E1 cells. Biol. Pharm. Bull. 28, 1948–1953 (2005)

    Article  CAS  Google Scholar 

  17. Kragh-Hansen, U.: Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev. 33, 17–53 (1981)

    CAS  Google Scholar 

  18. Carter, D.C., Ho, J.X.: Structure of serum albumin. Adv. Protein Chem. 45, 153–203 (1994)

    Article  CAS  Google Scholar 

  19. Peters, T. (ed.): All about albumins. Biochemistry, genetics and medical applications, p. 9. Academic Press, San Diego (1996)

    Google Scholar 

  20. Olson, R.E., Christ, D.D.: Plasma protein binding of drugs. Ann. Rep. Med. Chem. 31, 327–336 (1996)

    Article  CAS  Google Scholar 

  21. Curry, S., Mandelkow, H., Brick, P., Franks, N.: Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Biol. 5, 827–835 (1998)

    Article  CAS  Google Scholar 

  22. Rang, H.P., Dale, M.M., Ritter, J. (eds.): Molecular pharmacology, 3rd edn. Churchill Livingstone, New York (1995)

    Google Scholar 

  23. Zhang, G., Wang, A., Jiang, T., Guo, J.: Interaction of the irisflorentin with bovine serum albumin: a fluorescence quenching study. J. Mol. Struct. 891, 93–97 (2008)

    Article  CAS  Google Scholar 

  24. He, Y., Wang, Y.W., Tang, L.F., Liu, H., Chen, W., Zheng, Z.L., Zou, G.L.: Binding of puerarin to human serum albumin: A spectroscopic analysis and molecular docking. J. Fluoresc. 18, 433–442 (2007)

    Article  Google Scholar 

  25. Sahoo, K., Ghosh, K.S., Dasgupta, S.: Investigating the binding of curcumin derivatives to bovine serum albumin. Biophys. Chem. 132, 81–88 (2008)

    Article  CAS  Google Scholar 

  26. Sameena, Y., Sudha, N., Chandrasekaran, S., Enoch, I.V.M.V.: The role of encapsulation by β-cyclodextrin in the interaction of Raloxifene with macromolecular targets: a study by spectroscopy and molecular modeling. J. Biol. Phys. 40, 347–367 (2014)

    Article  CAS  Google Scholar 

  27. Ghosh, K.S., Sahoo, B.K., Jana, D., Dasgupta, S.: Studies on the interaction of copper complexes of (−)-epicatechin gallate and (−)-epigallocatechin gallate with calf thymus DNA. J. Inorg. Biochem. 102, 1711–1718 (2008)

    Article  CAS  Google Scholar 

  28. Maiti, T.K., Ghosh, K.S., Dasgupta, S.: Interaction of (−)-epigallocatechin-3-gallate with human serum albumin: fluorescence, Fourier transform infrared, circular dichroism, and docking studies. Proteins 64, 355–362 (2006)

    Article  CAS  Google Scholar 

  29. Rieutord, A., Bourget, P., Troche, G., Zazzo, J.F.: In vitro study of the protein binding of fusidic acid: a contribution to the comprehension of its pharmacokinetics behaviour. Int. J. Pharm. 1, 57–64 (1995)

    Article  Google Scholar 

  30. Borga, O., Borga, B.: Serum protein binding of the nonsteroidal antiinflammatory drugs: a comparative study. J. Pharm. Biopharm. 25, 63–77 (1997)

    Article  CAS  Google Scholar 

  31. Li, S., Purdy, W.C.: Cyclodextrins and their applications in analytical chemistry. Chem. Rev. 92, 1457–1470 (1992)

    Article  CAS  Google Scholar 

  32. Hadjoudis, E., Botsi, A., Pistolis, G., Galons, H.: Photoactivity within cyclodextrin cavities: Inclusion complexes of anils. J. Carbohyd. Chem. 16, 549–559 (1997)

    Article  CAS  Google Scholar 

  33. Enoch, I.V.M.V., Swaminathan, M.: Fluorimetric study on the molecular recognition of β-cyclodextrin with 2-amino-9-fluorenone. J. Fluoresc. 16, 501–510 (2006)

    Article  CAS  Google Scholar 

  34. Enoch, I.V.M.V., Swaminathan, M.: Stoichiometrically different inclusion complexes of 2-aminofluorene and 2-amino-9-hydroxyfluorene in β-cyclodextrin: a spectrofluorimetric study. J. Fluoresc. 16, 697–704 (2006)

    Article  CAS  Google Scholar 

  35. Enoch, I.V.M.V., Swaminathan, M.: Flourimetric and prototropic studies on the inclusion complexation of 2-amino and 4-aminodiphenyl ethers with β-cyclodextrin: unusual behavior of 4-aminodiphenyl ether. J. Lumin. 127, 713–720 (2007)

    Article  CAS  Google Scholar 

  36. Enoch, M.V., Rajamohan, R., Swaminathan, M.: Fluorimetric and prototropic studies on the inclusion complexation of 3,3′-diaminodiphenylsulphone with β-cyclodextrin and its unusual behavior. Spectrochim. Acta A 77, 473–477 (2010)

    Article  Google Scholar 

  37. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  38. da Silva, A.M.M., Amado, A.M., Ribeiro-Claro, P.J.A., Empis, J., Teixeira-Dias, J.J.C.: β-Cyclodextrin complexes of benzaldehyde, vanillin and cinnamaldehyde: a Raman spectroscopic study. J. Carbohyd. Chem. 14, 677–684 (1995)

    Article  Google Scholar 

  39. Liu, L., Zhu, S.: A study on the supramolecular structure of inclusion complex of β-cyclodextrin with prazosin hydrochloride. Carbohyd. Polym. 68, 472–476 (2007)

    Article  CAS  Google Scholar 

  40. Misiuk, W., Zalewska, M.: Investigation of inclusion complex of trazodone hydrochloride with hydroxypropyl-β-cyclodextrin. Carbohyd. Polym. 77, 482–488 (2009)

    Article  CAS  Google Scholar 

  41. Sideris, E.E., Koupparis, M.A., Macheras, P.E.: Effect of cyclodextrins on protein binding of drugs: the diflunisal/hydroxypropyl-β-cyclodextrin model case. Pharm. Res. 11, 90–95 (1994)

    Article  CAS  Google Scholar 

  42. Sudha, N., Enoch, I.M.V.: Binding of curculigosides and their β-cyclodextrin inclusion complexes with bovine serum albumin: A fluorescence spectroscopic study. J. Solution Chem. 40, 1755–1768 (2011)

    Article  CAS  Google Scholar 

  43. Yousuf, S., Sudha, N., Murugesan, G., Enoch, I.V.M.V.: Isolation of Prunin from the fruit shell of Bixa orellana and the effect of β-cyclodextrin on its binding with calf thymus DNA. Carbohyd. Res. 365, 46–51 (2013)

    Article  CAS  Google Scholar 

  44. Sameena, Y., Enoch, I.V.M.V.: The influence of β-cyclodextrin on the interaction of Hesperetin and its bismuth(III) complex with calf thymus DNA. J. Lumin. 138, 105–116 (2013)

    Article  CAS  Google Scholar 

  45. Enoch, I.V.M.V., Yousuf, S.: β-Cyclodextrin inclusion complexes of 2-hydroxyfluorene and 2-Hydroxy-9-fluorenone: differences in stoichiometry and excited state prototropic equilibrium. J. Solution Chem. 42, 470–484 (2013)

    Article  CAS  Google Scholar 

  46. Cho, D.W., Kim, Y.H., Kang, S.G., Yoon, M., Kim, D.J.: Cyclodextrin effects on intramolecular charge transfer of 2-biphenylcarboxylic acid: a pre-twisted molecule. J. Chem. Soc. Faraday Trans. 92, 29–33 (1996)

    Article  CAS  Google Scholar 

  47. Chandrasekaran, S., Sameena, Y., Enoch, I.V.M.V.: The unusual fluorescence quenching of Coumarin 314 by β-cyclodextrin and the effect of β-cyclodextrin on its binding with calf thymus DNA. Aust. J. Chem. 67, 256–265 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel V. M. V. Enoch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudha, N., Sameena, Y. & Enoch, I.V.M.V. β-Cyclodextrin Encapsulates Biochanin A and Influences its Binding to Bovine Serum Albumin: Alteration of the Binding Strength. J Solution Chem 45, 431–444 (2016). https://doi.org/10.1007/s10953-016-0446-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0446-1

Keywords

Navigation