Skip to main content
Log in

Volumetric and Acoustic Behavior of d(+)-glucose and d(−)-fructose in Aqueous Trisodium Citrate Solutions at Different Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Apparent molar volumes (V ϕ ) and apparent molar isentropic compressions (K ϕ,S ) for saccharides d(+)-glucose and d(−)-fructose have been determined in water and (0.2, 0.4, and 0.6) mol·kg−1 aqueous solutions of trisodium citrate at T = (288.15, 298.15, 308.15 and 318.15) K and atmospheric pressure from density and speed of sound data. The partial molar volumes (\( V_{\phi }^{0} \)) and the standard partial molar volumes of transfer (\( \Delta V_{\phi }^{0} \)) from water to aqueous trisodium citrate solutions have been calculated. The partial molar expansion coefficients \( (\partial V_{\phi }^{0} /\partial T)_{p} \) and their second derivative \( (\partial^{2} V_{\phi }^{0} /\partial T^{2} )_{p} \) have also been estimated. The partial molar isentropic compression (\( K_{\phi ,S}^{0} \)) and partial molar isentropic compression of transfer (\( \Delta K_{\phi ,S}^{0} \)) have been calculated from the speed of sound data. Pair and triplet interaction parameters (V AB, V ABB) and (K AB and K ABB) from volumetric and speed of sound data, respectively, have been calculated using the McMillan–Mayer theory The results are discussed in terms of stereochemistry of the solutes and prevailing interaction in the mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bordat, P., Lerbret, A., Demaret, J.P., Affourard, F., Descamps, M.: Does the interaction potential determine both the fragility of a liquid and the vibrational properties of its glassy state? Europhys. Lett. 65, 41–47 (2004)

    Article  CAS  Google Scholar 

  2. Longinotti, M.P., Corti, H.R.: Electrical conductivity and complexation of sodium borate in trehalose and sucrose aqueous solutions. J. Solution Chem. 33, 1029–1040 (2004)

    Article  CAS  Google Scholar 

  3. Mazzobre, M.F., Longinotti, M.P., Corti, H.R., Buera, M.P.: Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting. Cryobiology 43, 199–210 (2001)

    Article  CAS  Google Scholar 

  4. Goldberg, R.N., Tewari, Y.B., Ahluwalia, J.C.: Thermodynamics of the hydrolysis of sucrose. J. Biol. Chem. 264, 9901–9904 (1989)

    CAS  Google Scholar 

  5. Galema, S.A., Howard, E., Engberts, J.B.F.N., Grigera, J.R.: The effect of stereochemistry upon carbohydrate hydration. A molecular dynamics simulation of β-d-galactopyranose and (α, β)-d-talopyranose. Carbohydr. Res. 265, 215–225 (1994)

    Article  CAS  Google Scholar 

  6. Banipal, P.K., Banipal, T.S., Lark, B.S., Ahluwalia, J.C.: Partial molar heat capacities and volumes of some mono-, di- and tri-saccharides in water at 298.15, 308.15 and 318.15 K. J. Chem. Soc. Faraday Trans. 93, 81–87 (1997)

    Article  CAS  Google Scholar 

  7. Lourdin, D., Colonna, P., Ring, S.G.: Volumetric behaviour of maltose–water, maltose–glycerol and starch–sorbitol–water systems mixtures in relation to structural relaxation. Carbohydr. Res. 338, 2883–2887 (2003)

    Article  CAS  Google Scholar 

  8. Goldberg, R.N., Tewari, Y.B.: Thermodynamic and transport properties of carbohydrates and their monophosphates: the pentoses and hexoses. J. Phys. Chem. Ref. Data 18, 809–880 (1989)

    Article  CAS  Google Scholar 

  9. Galema, S.A., Blandamer, M.J., Jan Engberts, B.F.N.: Stereochemical aspects of hydration of carbohydrates in aqueous solutions. Kinetic medium effects. J. Org. Chem. 57, 1995–2000 (1992)

    Article  CAS  Google Scholar 

  10. Miller, D.P., De Pablo, J.J.: Calorimetric solution properties of simple saccharides and their significance for the stabilization of biological structure and function. J. Phys. Chem. B 104, 8876–8883 (2000)

    Article  CAS  Google Scholar 

  11. Fuchs, K., Kaatze, U.: Molecular dynamics of carbohydrate aqueous solutions. Dielectric relaxation as a function of glucose and fructose concentration. J. Phys. Chem. B 105, 2036–2042 (2001)

    Article  CAS  Google Scholar 

  12. Li, S., Sang, W., Lin, R.: Partial molar volumes of glycine, l-alanine, and l-serine in aqueous glucose solutions at T = 298.15 K. J. Chem. Thermodyn. 34, 1761–1768 (2002)

    Article  CAS  Google Scholar 

  13. Chauhan, S., Kumar, K.: Effect of glycine on aqueous solution behavior of saccharides at different temperatures. Volumetric and ultrasonic studies. J. Mol. Liq. 194, 212–226 (2014)

    Article  CAS  Google Scholar 

  14. Pal, A., Chauhan, N.: Volumetric behavior of amino acids and their group contributions in aqueous lactose solutions at different temperatures. J. Chem. Thermodyn. 43, 140–146 (2011)

    Article  CAS  Google Scholar 

  15. Riyazuddeen, Usmani, M.A.: Interactions in (l-alanine/l-threonine + aqueous glucose/aqueous sucrose) systems at (298.15–323.15) K. Thermochim. Acta 527, 112–117 (2012)

    Article  CAS  Google Scholar 

  16. Ali, A., Hyder, S., Sabir, S., Chand, D., Nain, A.K.: Volumetric, viscometric, and refractive index behaviour of α-amino acids and their groups contribution in aqueous d-glucose solution at different temperatures. J. Chem. Themodyn. 38, 136–143 (2006)

    Article  CAS  Google Scholar 

  17. Parfenyuk, E.V.I., Davydova, O., Lebedeva, N.S.: Interaction of d-maltose and sucrose with some amino acids in aqueous solutions. J. Solution Chem. 33, 1–10 (2004)

    Article  CAS  Google Scholar 

  18. Zhuo, K., Liu, Q., Wang, Y., Ren, Q., Wang, J.: Volumetric and viscosity properties of monosaccharides in aqueous amino acid solutions at 298.15 K. J. Chem. Eng. Data 51, 919–927 (2006)

    Article  CAS  Google Scholar 

  19. Liu, H., Lin, R., Zhang, H.: Enthalpic interactions of amino acids with saccharides in aqueous solutions at 298.15 K. J. Chem. Eng. Data 49, 416–420 (2004)

    Article  CAS  Google Scholar 

  20. Pal, A., Kumar, S.: Apparent molar volumes and adiabatic compressibilities of some amino acids in aqueous sucrose solutions at 298.15 K. Z. Phys. Chem. 218, 1169–1186 (2004)

    Article  CAS  Google Scholar 

  21. Samanta, T., Saharay, S.K.: Volumetric and viscometric studies of glucose in binary aqueous solutions of urea at different temperatures. J. Chem. Thermodyn. 42, 1131–1135 (2012)

    Article  Google Scholar 

  22. Ryshetti, S., Gupta, A., Tangeda, S.J., Gardas, R.L.: Acoustic and volumetric properties of betaine hydrochloride drug in aqueous d(+)-glucose and sucrose solutions. J. Chem. Thermodyn. 77, 123–130 (2014)

    Article  CAS  Google Scholar 

  23. Comensana, J.F., Otero, J.J., Garcia, E., Correa, A.: Densities and viscosities of ternary systems of water + glucose + sodium chloride at several temperatures. J. Chem. Eng. Data 48, 362–366 (2003)

    Article  Google Scholar 

  24. Banipal, P.K., Singh, V., Banipal, T.S.: Effect of sodium acetate on the volumetric behaviour of some mono-, di-, and tri-saccharides in aqueous solutions over temperature range (288.15 to 318.15) K. J. Chem. Thermodyn. 42, 90–103 (2010)

    Article  CAS  Google Scholar 

  25. Roy, M.N., Dewan, R., Roy, P.K., Biswas, D.: Apparent molar volumes and viscosity B-coefficients of carbohydrates in aqueous cetrimonium bromide solutions at (298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 55, 3617–3624 (2010)

    Article  CAS  Google Scholar 

  26. Carneiro, A.P., Rodriguez, O., Held, C., Sadowski, G., Macedo, E.A.: Density of mixtures containing sugars and ionic liquids: experimental data and PC-SAFT modeling. J. Chem. Eng. Data 59, 2942–2954 (2014)

    Article  CAS  Google Scholar 

  27. Shekaari, H., Kazempur, A.: Thermodynamic properties of d-glucose in aqueous 1-hexyl-3-methylimidazolium bromide solutions at 298.15 K. Fluid Phase Equilib. 336, 122–127 (2012)

    Article  CAS  Google Scholar 

  28. Kumar, H., Singla, M., Jindal, R.: Solvation behaviour of some biologically active compounds in aqueous solutions of trilithium citrate at different temperatures. J. Mol. Liq. 197, 301–314 (2014)

    Article  CAS  Google Scholar 

  29. Kumar, H., Singla, M., Jindal, R.: Volumetric properties of glycine, l-alanine, and l-valine in aqueous triammonium citrate solutions at different temperatures. Monatsh. Chem. 145, 565–575 (2014)

    Article  CAS  Google Scholar 

  30. Kumar, H., Kaur, K., Kaur, S.P., Singla, M.: Studies of volumetric and acoustic properties of trisodium citrate and tripotassium citrate in aqueous solutions of N-acetyl glycine at different temperatures. J. Chem. Thermodyn. 59, 173–181 (2013)

    Article  CAS  Google Scholar 

  31. Kumar, H., Singla, M., Jindal, R.: Interactions of glycine, l-alanine and l-valine with aqueous solutions of trisodium citrate at different temperatures: a volumetric and acoustic approach. J. Chem. Thermodyn. 67, 170–180 (2013)

    Article  CAS  Google Scholar 

  32. Kumar, H., Kaur, K., Kumar, S.: Apparent molar volumes and transport behavior of glycine and l-valine in aqueous solutions of tripotassium citrate at T = (308.15 and 318.15) K. J. Mol. Liq. 162, 89–94 (2011)

    Article  CAS  Google Scholar 

  33. Fortin, T.J., Laesecke, A., Freund, M., Outcalt, S.: Advanced calibration, adjustment, and operation of a density and sound speed analyzer. J. Chem. Thermodyn. 57, 276–285 (2013)

    Article  CAS  Google Scholar 

  34. Rowlinson, J.S.: Liquids and Liquid Mixtures, p. 17. Butterworths, London (1959)

    Google Scholar 

  35. Rodriguez, H., Soto, A., Acre, A., Khoshkbarchi, M.K.: Apparent molar volume, isentropic compressibility, refractive index and viscosity of dl-alanine in aqueous NaCl solutions. J. Solution Chem. 32, 53–63 (2003)

    Article  CAS  Google Scholar 

  36. Soto, A., Acre, A., Khoshkbarchi, M.K.: Thermodynamic of diglycine and triglycine in aqueous NaCl solutions: Apparent molar volume, isentropic compressibility and refractive index. J. Solution Chem. 33, 11–21 (2004)

    Article  CAS  Google Scholar 

  37. Belibagli, K., Aryanci, E.: Viscosities and apparent molar volumes of some amino acids in water in 6 M guanidine hydrochloride at 25 °C. J. Solution Chem. 19, 867–882 (1990)

    Article  CAS  Google Scholar 

  38. Pal, A., Chauhan, N.: Partial molar volumes, expansibilities and compressibilities of glyglyglycine in aqueous sucrose and fructose solutions between 288.15 and 308.15 K. Thermochim. Acta 513, 68–74 (2011)

    Article  CAS  Google Scholar 

  39. Mishra, A.K., Ahluwalia, J.C.: Apparent molal volumes of amino acids, N-acetylamino acids and dipeptides in aqueous solution. J. Phys. Chem. 88, 86–92 (1984)

    Article  CAS  Google Scholar 

  40. Bhat, R., Kishore, N., Ahluwalia, J.C.: Thermodynamic studies of transfer of some amino acids and peptides from water to aqueous glucose and sucrose solutions at 298.15 K. J. Chem. Soc. Faraday Trans. I 88, 2651–2665 (1988)

    Article  Google Scholar 

  41. Yan, J., Wang, J., Zhang, H., Liu, D.: Volumetric properties of some α-amino acids in aqueous guanidine hydrochloride at 5, 15, 25, and 35 °C. J. Solution Chem. 27, 473–483 (1998)

    Article  CAS  Google Scholar 

  42. Iqbal, M.J., Chaudhary, M.A.: Effect of volumetric and viscometric properties of some non-steroidal anti-inflammatory drugs in aprotic solvents. J. Chem. Thermodyn. 42, 951–956 (2010)

    Article  CAS  Google Scholar 

  43. Franks, F., Quickenden, M.A., Reid, D.S., Watson, B.: Calorimetric and volumetric studies of dilute aqueous solutions of cyclic ether derivatives. Trans. Faraday Soc. 66, 582–589 (1970)

    Article  CAS  Google Scholar 

  44. Shahidi, F., Ferrel, P.G., Edwards, J.T.: Partial molar volumes of organic compounds in water. III. Carbohydrates. J. Solution Chem. 5, 807–816 (1976)

    Article  CAS  Google Scholar 

  45. Terasawa, S., Itsuki, H., Arakawa, S.: Contribution of hydrogen bonds to the partial molar volumes of nonionic solutes in water. J. Phys. Chem. 79, 2345–2351 (1975)

    Article  CAS  Google Scholar 

  46. Bondi, A.: van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964)

    Article  CAS  Google Scholar 

  47. Bondi, A.: Physical Properties of Molecular Crystals, Liquids, and Glasses. Chap. 14. Wiley, New York (1968)

    Google Scholar 

  48. Wadi, R.K., Ramasami, P.: Partial molal volumes and adiabatic compressibilities of transfer of glycine and dl-alanine from water to aqueous sodium sulfate at 288.15, 308.15 and 308.15 K. J. Chem. Soc. Faraday Trans. 93, 243–247 (1997)

    Article  CAS  Google Scholar 

  49. Salabat, A., Shamshiri, L., Sahrakar, F.: Thermodynamic and transport properties of aqueous trisodium citrate system at 298.15 K. J. Mol. Liq. 118, 67–70 (2005)

    Article  CAS  Google Scholar 

  50. Sadheghi, R., Ziamajidi, F.: Apparent molar volume and isentropic compressibility of trisodium citrate in water and in aqueous solutions of polyvinylpyrrolidone at T = (283.15 to 308.15) K. J. Chem. Eng. Data 52, 1037–1044 (2007)

    Article  Google Scholar 

  51. Helper, L.G.: Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613–4617 (1969)

    Article  Google Scholar 

  52. Roy, M.N., Dakua, V.K., Sinha, B.: Partial molar volumes of organic compounds in water. III. Carbohydrates. Int. J Thermophys. 28, 1275–1284 (2007)

    Article  CAS  Google Scholar 

  53. Millero, F.J.: In: Horne, R.A. (ed.) Structure and Transport Process in Water and Aqueous Solutions. Wiley, New York (1972)

    Google Scholar 

  54. Misra, P.R., Das, B., Parmar, M.L., Banyal, D.S.: Effect of temperature on the partial molar volumes of some bivalent transition metal nitrates and magnesium nitrate in DMF + water mixtures. Ind. J. Chem. A 44, 1582–1588 (2005)

    Google Scholar 

  55. McMillan Jr, W.G., Mayer, J.E.: the statistical thermodynamics of multicomponent systems. J. Chem. Phys. 13, 276–305 (1945)

    Article  CAS  Google Scholar 

  56. Kozak, J.J., Knight, W., Kauzmann, W.: Solute–solute interactions in aqueous solutions. J. Chem. Phys. 68, 675–690 (1968)

    Article  Google Scholar 

  57. Friedmann, H.L., Krishnan, C.V.: In: Franks, F. (ed.) Water—A Comprehensive Treatise, Chap. 1, vol. 3. Plenum Press, New York (1993)

    Google Scholar 

  58. Franks, F., Pedley, M., Reid, D.S.: Solute interactions in dilute aqueous solutions. Part 1-Microcalorimetric study of the hydrophobic interaction. J. Chem. Soc. Faraday Trans. I 72, 359–367 (1976)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (Sheetal) is thankful to The Director and Head, Department of Chemistry, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar for providing a MHRD fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H., Sheetal & Sharma, S.K. Volumetric and Acoustic Behavior of d(+)-glucose and d(−)-fructose in Aqueous Trisodium Citrate Solutions at Different Temperatures. J Solution Chem 45, 1–27 (2016). https://doi.org/10.1007/s10953-015-0427-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0427-9

Keywords

Navigation