Skip to main content
Log in

Volumetric, Acoustic and Transport Properties of Metformin Hydrochloride Drug in Aqueous d-Glucose Solutions at T = (298.15–318.15) K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Apparent molar volumes, apparent molar adiabatic compressibilities and viscosity B-coefficients for metformin hydrochloride in aqueous d-glucose solutions were determined from solution densities, sound velocities and viscosities measured at T = (298.15–318.15) K and at pressure p = 101 kPa as a function of the metformin hydrochloride concentrations. The standard partial molar volumes (\( \phi_{V}^{0} \)) and slopes (\( S_{V}^{*} \)) obtained from the Masson equation were interpreted in terms of solute–solvent and solute–solute interactions, respectively. Solution viscosities were analyzed using the Jones–Dole equation and the viscosity A and B coefficients discussed in terms of solute–solute and solute–solvent interactions, respectively. Adiabatic compressibility (\( \beta_{s} \)) and apparent molar adiabatic compressibility (\( \phi_{\kappa }^{{}} \)), limiting apparent molar adiabatic compressibility (\( \phi_{\kappa }^{0} \)) and experimental slopes (\( S_{\kappa }^{*} \)) were determined from sound velocity data. The standard volume of transfer (\( \Delta_{t} \phi_{V}^{0} \)), viscosity B-coefficients of transfer (\( \Delta_{t} B \)) and limiting apparent molar adiabatic compressibility of transfer (\( \Delta_{t} \phi_{\kappa }^{0} \)) of metformin hydrochloride from water to aqueous glucose solutions were derived to understand various interactions in the ternary solutions. The activation parameters of viscous flow for the studied solutions were calculated using transition state theory. Hepler’s coefficient \( (d\phi /dT)_{p} \) indicated the structure making ability of metformin hydrochloride in the ternary solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iqbal, M.J., Chaudhry, M.A.: Effect of temperature on volumetric and viscometric properties of some non-steroidal anti-inflammatory drugs in aprotic solvents. J. Chem. Thermodyn. 42, 951–956 (2010)

    Article  CAS  Google Scholar 

  2. Ryshetti, S., Gupta, A., Tangeda, S.J., Gardas, R.L.: Acoustic and volumetric properties of betaine hydrochloride drug in aqueous d(+)-glucose and sucrose solutions. J. Chem. Thermodyn. 77, 123–130 (2014)

    Article  CAS  Google Scholar 

  3. Jengathe, S.P., Dhondge, S.S., Paliwal, L.J., Tangde, V.M., Mondal, S.: Effect of sodium chloride and myo-inositol on diphenhydramine hydrochloride drug in aqueous solution at different temperatures: volumetric and acoustic approach. J. Chem. Thermodyn. 87, 78–87 (2015)

    Article  CAS  Google Scholar 

  4. Pal, A., Soni, S.: Volumetric properties of glycine in aqueous solutions of some sulfa drugs at (288.15, 298.15, and 308.15) K. J. Chem. Eng. Data 58, 18–23 (2013)

    Article  CAS  Google Scholar 

  5. Sarkar, A., Pandit, B., Sinha, B.: Volumetric and transport properties of betaine hydrochloride drug in aqueous uracil solutions at T = (298.15–318.15) K. J. Chem. Thermodyn. 98, 118–125 (2016)

    Article  CAS  Google Scholar 

  6. Kumar, H., Behal, I., Singla, M.: Effect of l-serine and l-threonine on volumetric and acoustic behaviour of aqueous metformin hydrochloride solutions at T = (305.15, 310.15 and 315.15) K. J. Chem. Thermodyn. 95, 1–14 (2016)

    Article  CAS  Google Scholar 

  7. Chauhan, S., Singh, K., Chauhana, M.S., Umar, A., Sundaresan, C.N.: Intermolecular interactions of l-glutamine and l-histidine in aqueous solutions of metformin hydrochloride: thermo-acoustic and optical properties. J. Mol. Liq. 214, 390–399 (2016)

    Article  CAS  Google Scholar 

  8. Dhondge, S.S., Zodape, S.P., Parwate, D.V.: Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures. J. Chem. Thermodyn. 48, 207–212 (2012)

    Article  CAS  Google Scholar 

  9. Rajagopal, K., Jayabalakrishnan, S.S.: A volumetric and viscometric study of 4-aminobutyric acid in aqueous solutions of metformin hydrochloride at 308.15, 313.15 and 318.15 K. J. Serb. Chem. Soc. 76, 129–142 (2011)

    Article  CAS  Google Scholar 

  10. Chauhan, S., Singh, K., Kumar, K., Neelakantan, S.C., Kumar, G.: Drug–amino acid interactions in aqueous medium: volumetric, compressibility, and viscometric studies. J. Chem. Eng. Data 61, 788–796 (2016)

    Article  CAS  Google Scholar 

  11. Zhao, C., Ma, P., Li, J.: Partial molar volumes and viscosity B-coefficients of arginine in aqueous glucose, sucrose and l-ascorbic acid solutions at T = 298.15 K. J. Chem. Thermodyn. 37, 37–42 (2005)

    Article  CAS  Google Scholar 

  12. Banipal, P.K., Chahal, A.K., Banipal, T.S.: Studies on volumetric properties of some saccharides in aqueous potassium chloride solutions over temperature range (288.15–318.15) K. J. Chem. Thermodyn. 41, 452–483 (2009)

    Article  CAS  Google Scholar 

  13. Fucaloro, A.F., Pu, Y., Cha, K., Williams, A., Conrad, K.: Partial molar volumes and refractions of aqueous solutions of fructose, glucose, mannose, and sucrose at 15.00, 20.00, and 25.00 °C. J. Solution Chem. 36, 61–80 (2007)

    Article  CAS  Google Scholar 

  14. Nain, A.K., Lather, M., Sharma, R.K.: Volumetric, ultrasonic and viscometric behavior of l-methionine in aqueous–glucose solutions at different temperatures. J. Mol. Liq. 159, 180–188 (2011)

    Article  CAS  Google Scholar 

  15. Samanta, T., Roy, A.: Volumetric and viscometric studies of urea in binary aqueous solutions of glucose at different temperatures. J. Chem. Thermodyn. 42, 262–266 (2009)

    Article  Google Scholar 

  16. Sharma, S.K., Singh, G., Kumar, H., Kataria, R.: Study of interactions of N-acetyl glycine with glucose in aqueous solutions at various temperatures: a volumetric and ultrasonic study. J. Mol. Liq. 194, 198–205 (2014)

    Article  CAS  Google Scholar 

  17. Mergenthaler, P., Lindauer, U., Dienel, G.A., Meisel, A.: Sugar for the brain: the roles of glucose in physiological and pathological brain function. Trends Neurosci. 36, 587–597 (2013)

    Article  CAS  Google Scholar 

  18. Pellerin, L.: Food for thought: the importance of glucose and other energy substrates for sustaining brain function under varying levels of activity. Diabetes Metab. (2010). doi:10.1016/s1262-3636(10)70469-9

    Google Scholar 

  19. Shoemaker, D.P., Garland, C.W.: Experiments in Physical Chemistry, pp. 131–138. McGraw-Hill, New York (1967)

    Google Scholar 

  20. Marsh, K.N.: Recommended Reference Materials for the Realization of Physicochemical Properties. Blackwell, Oxford (1987)

    Google Scholar 

  21. Dean, J.A.: Lange’s Handbook of Chemistry. McGraw-Hill, New York (1973)

    Google Scholar 

  22. Pandit, B.K., Sarkar, A., Sinha, B.: Volumetric and viscometric studies of nicotinic acid in aqueous solutions of sodium malonate at T = (298.15–318.15) K. J. Chem. Thermodyn. 98, 193–199 (2016)

    Article  CAS  Google Scholar 

  23. Pandit, B.K., Sarkar, A., Sinha, B.: Solution thermodynamics of sodium pyruvate in aqueous glycine solutions at T = (298.15–313.15) K. J. Serb. Chem. Soc. (2016). doi:10.2298/JSC151031034P

    Google Scholar 

  24. Masson, D.O.: Solute molecular volumes in relation to solvation and ionization. Philos. Mag. 8, 218–235 (1929)

    Article  CAS  Google Scholar 

  25. Sarkar, A., Sinha, B.: Solution thermodynamics of aqueous nicotinic acid solutions in the presence of tetrabutylammonium hydrogen sulphate. J. Serb. Chem. Soc. 78, 1225–1240 (2013)

    Article  CAS  Google Scholar 

  26. Sarkar, A., Sinha, B.: Effect of tetrabutylammonium hydrogen sulphate on the solution thermodynamics of thiamine hydrochloride in aqueous solutions. J. Mol. Liq. 223, 321–328 (2016)

    Article  CAS  Google Scholar 

  27. Sarkar, A., Sinha, B.: Solution properties and taste behavior of lactose monohydrate in presence of aqueous ascorbic acid solutions at different temperatures: volumetric and rheological approach. Food Chem. 211, 590–597 (2016)

    Article  CAS  Google Scholar 

  28. Sinha, B., Sarkar, A., Roy, P.K., Brahman, D.: Physicochemical properties of l-alanine in aqueous silver sulphate solutions at (298.15, 308.15, and 318.15) K. Int. J. Thermophys. 32, 2062–2078 (2011)

    Article  CAS  Google Scholar 

  29. Friedman, H.L., Krishnan, C.V., Franks, F.: Water: A Comprehensive Treatise. Plenum Press, New York (1973)

    Google Scholar 

  30. Bhatt, R., Ahlluwalia, J.C.: Partial molar heat capacities and volumes of transfer of some amino acids and peptides from water to aqueous sodium chloride solutions at 298.15 K. J. Phys. Chem. 89, 1099–1105 (1985)

    Article  Google Scholar 

  31. Wadi, R.K., Ramasami, P.: Partial molal volumes and adiabatic compressibilities of transfer of glycine and dl-alanine from water to aqueous sodium sulfate at 288.15, 298.15 and 308.15 K. J. Chem. Soc. Faraday Trans. I 93, 243–247 (1997)

    Article  CAS  Google Scholar 

  32. Sarkar, A., Pandit, B., Sinha, B.: Effect of paracetamol in aqueous sodium malonate solutions with reference to volumetric and viscometric measurements. J. Chem. Thermodyn. 96, 161–168 (2016)

    Article  CAS  Google Scholar 

  33. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, 3rd edn. Reinhold Publishing Corporation, New York (1964)

    Google Scholar 

  34. Sinha, B., Roy, P.K., Sarkar, B.K., Brahman, D., Roy, M.N.: Apparent molar volumes and viscosity B-coefficients of caffeine in aqueous thorium nitrate solutions at T = (298.15, 308.15, and 318.15) K. J. Chem. Thermodyn. 42, 380–386 (2010)

    Article  CAS  Google Scholar 

  35. Millero, F.J.: In: Horne, R.A. (ed.) Structure and Transport Process in Water and Aqueous Solutions. New York (1972)

  36. Hepler, L.G.: Solute–solvent interactions of some salts in THF + water mixtures by volumetric measurements. Can. J. Chem. 47, 4617–4622 (1969)

    Google Scholar 

  37. Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)

    Article  CAS  Google Scholar 

  38. Roy, M.N., Roy, M.C., Basak, S.: Exploring solute–solvent interactions of amino acids in aqueous [EPyBF4] arrangements by volumetric, viscometric, refractometric, and acoustic approach. Int. J. Thermophys. 35, 853–864 (2014)

    Article  CAS  Google Scholar 

  39. Sikdar, P.S., Roy, M.N.: Physico-chemical exploration of solution behaviour of some metal perchlorates prevailing in N-methyl formamide with the manifestation of ion solvent consequences. Thermochim. Acta 607, 53–59 (2015)

    Article  CAS  Google Scholar 

  40. Kumar, H., Sharma, S.K.: Volumetric and acoustic behavior of d(+)-glucose and d(−)-fructose in aqueous trisodium citrate solutions at different temperatures. J. Solution Chem. 45, 1–27 (2016)

    Article  CAS  Google Scholar 

  41. Feakins, D., Freemantle, D.J., Lawrence, K.G.: Transition state treatment of the relative viscosity of electrolytic solutions. J. Chem. Soc., Faraday Trans. I 70, 795–806 (1974)

    Article  CAS  Google Scholar 

  42. Roy, M.N., Chanda, R., Das, R.K., Ekka, D.: Densities and viscosities of citric acid in aqueous cetrimonium bromide solutions with reference to the manifestation of solvation. J. Chem. Eng. Data 56, 3285–3290 (2012)

    Article  Google Scholar 

  43. Glasstone, S., Laidler, K., Eyring, H.: Theory of Rate Process. McGraw-Hill, New York (1941)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Departmental Special Assistance Scheme under the University Grants Commission, New Delhi [DRS-SAP-III, No. F540/12/DRS/2013] for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Sinha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to the best of their knowledge.

Additional information

Authors whose names appear on the submission have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 460 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Sinha, B. Volumetric, Acoustic and Transport Properties of Metformin Hydrochloride Drug in Aqueous d-Glucose Solutions at T = (298.15–318.15) K. J Solution Chem 46, 424–445 (2017). https://doi.org/10.1007/s10953-017-0584-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0584-0

Keywords

Navigation