Skip to main content
Log in

Spectroscopic Investigation of the Interaction of Pyridinium Surfactant with Bovine Serum Albumin

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The interaction of 1-dodecyl carbamoyl methylene pyridinium chloride (DAPC) with bovine serum albumin (BSA) was investigated by UV–Vis absorption, CD and fluorescence spectroscopies. The results of fluorescence titration reveal that DAPC strongly quenched the intrinsic fluorescence of BSA and caused a blue shift of the emission wavelength through a static quenching mechanism. The reduction of the binding constant (K A) and number of binding sites (n) between DAPC and BSA was studied with increasing temperature. The binding process is exothermic and entropy driven. The distance r between the donor of BSA and the acceptor of DAPC decreases with increasing concentration of DAPC. Furthermore, CD spectra and synchronous fluorescence spectra shows that DAPC induced conformational changes of BSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dudev, T., Lim, C.: Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem. Rev. 103, 773–788 (2003)

    Article  CAS  Google Scholar 

  2. Ruso, J.M., Deo, N., Somasundaran, P.: Complexation between dodecyl sulfate surfactant and zein protein in solution. Langmuir 20, 8988–8991 (2004)

    Article  CAS  Google Scholar 

  3. Liu, J.Q., Tian, J.N., Tian, X., Hu, Z.D.: Interaction of isofraxidin with human serum albumin. Bioorg. Med. Chem. 12, 469–474 (2004)

    Article  CAS  Google Scholar 

  4. Zhang, L.N., Wu, F.Y., Liu, A.H.: Study of the interaction between 2,5-di-[2-(4-hydroxy-phenyl) ethylene]-terephthalonitril and bovine serum albumin by fluorescence spectroscopy. Spectrochim. Acta A 79, 97–103 (2011)

    Article  CAS  Google Scholar 

  5. He, W.Y., Li, Y., Hu, Z.: Specific interaction of chalcone–protein: cardamonin binding site II on the human serum albumin molecule. Biopolymers 79, 48–57 (2005)

    Article  CAS  Google Scholar 

  6. Liu, Y.H., Zhang, L.J., Liu, R.T.: Spectroscopic identification of interactions of Pb2+ with bovine serum albumin. J. Fluoresc. 22, 239–245 (2012)

    Article  CAS  Google Scholar 

  7. Yang, Y., Yu, X., Tong, W., Lu, S., Liu, H., Yao, Q., Zhou, H.: Investigation of the interaction between novel spiro thiazolo [3,2-a][1,3,5] triazines and bovine serum albumin by spectroscopic methods. J. Solution Chem. 42, 666–675 (2013)

    Article  CAS  Google Scholar 

  8. Zhou, T., Ao, M.Q., Xu, G.Y., Liu, T.: Interactions of bovine serum albumin with cationic imidazolium and quaternary ammonium gemini surfactants: Effects of surfactant architecture. J. Colloid Interface Sci. 389, 175–181 (2013)

    Article  CAS  Google Scholar 

  9. Zhao, R., Xie, Y., Tan, Y., Tan, C., Jiang, Y.: Binding of a bcl-2 family inhibitor to bovine serum albumin: fluorescence quenching and molecular docking study. Protein Pept. Lett. 19, 945–954 (2012)

    Google Scholar 

  10. Fainerman, V.B., Zholob, S.A., Leser, M.: Competitive absorption from mixed nonionic surfactant/protein solutions. J. Colloid Interface Sci. 274, 496–501 (2004)

    Article  CAS  Google Scholar 

  11. Yao, Q., Yu, X., Zheng, T., Liu, H., Yang, Y., Yi, P.: Spectroscopic studies on the interaction of carteolol hydrochloride and urea-induced bovine serum albumin. Spectrochim. Acta A 113, 447–451 (2013)

    Article  CAS  Google Scholar 

  12. Turro, N.J., Lei, X.G., Ananthapadmanabhan, K.P., Aronson, M.: Spectroscopic probe analysis of protein–surfactant interactions: the BSA/SDS system. Langmuir 11, 2525–2533 (1995)

    Article  CAS  Google Scholar 

  13. Duan, L., Yang, L., Xiong, H., Zhang, X., Wang, S.: Studies on the electrochemistry of rutin and its interaction with bovine serum albumin using a glassy carbon electrode modified with carbon-coated nickel nanoparticles. Microchim. Acta 180, 355–361 (2013)

    Article  CAS  Google Scholar 

  14. Sharma, A., Pasha, J.M., Deep, S.: Effect of the sugar and polyol additives on the aggregation kinetics of BSA in the presence of N-cetyl-N, N, N-trimethyl ammonium bromide. J. Colloid Interface Sci. 350, 240–248 (2010)

    Article  CAS  Google Scholar 

  15. Usman, M., Siddiq, M.: Surface and micellar properties of chloroquine diphosphate and its interactions with surfactants and human serum albumin. J. Chem. Thermodyn. 58, 359–366 (2013)

    Article  CAS  Google Scholar 

  16. Lissi, E., Abuin, E., Lanio, M.E.: A new and simple procedure for the evaluation of the association of surfactants to proteins. J. Biochem. Biophys. Methods 50, 261–268 (2002)

    Article  CAS  Google Scholar 

  17. Gelamo, E.L., Silva, C.H.T.P., Imasato, H., Tabak, M.: Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling. Biochim. Biophys. Acta 1594, 84–99 (2002)

    Article  CAS  Google Scholar 

  18. Mote, U.S., Han, S.H., Patil, S.R., Kolekar, G.B.: Effect of temperature and pH on interaction between bovine serum albumin and cetylpyridinium bromide: fluorescence spectroscopic approach. J. Lumin. 130, 2059–2064 (2010)

    Article  CAS  Google Scholar 

  19. Quagliotto, P., Barbero, N., Barolo, C., Artuso, E.: Synthesis and properties of cationic surfactants with tuned hydrophylicity. J. Colloid Interface Sci. 340, 269–275 (2009)

    Article  CAS  Google Scholar 

  20. Buciñski, A., Socha, A., Wnuk, M., Bqczek, T., Nowaczyk, A.: Artificial neural networks in prediction of antifungal activity of a series of pyridine derivatives against Candida albicans. J. Microbiol. Methods 76, 25–29 (2009)

    Article  Google Scholar 

  21. Loftsson, T., Thorsteinsson, T., Másson, M.: Hydrolysis kinetics and QSAR investigation of soft antimicrobial agents. J. Pharm. Pharmacol. 57, 721–727 (2005)

    Article  CAS  Google Scholar 

  22. Sundararaman, M., Kumar, R.R., Venkatesan, P., llangovan, A.: 1-Alkyl-(N,N-dimethy lamino)pyridinium bromides: inhibitory effect on virulence factors of Candida albicans and on the growth of bacterial pathogens. J. Med. Microbiol. 62, 241–248 (2013)

    Article  CAS  Google Scholar 

  23. Wang, Q., Yan, J., He, J., Bai, K., Li, H.: Characterization of the interaction between 3-oxotabersonine and two serum albumins by using spectroscopic techniques. J. Lumin. 138, 1–7 (2013)

    Article  CAS  Google Scholar 

  24. Abou-Zied, O.K., Al-Shihi, O.I.: Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. J. Am. Chem. Soc. 32, 10793–10801 (2008)

    Article  Google Scholar 

  25. Wu, D., Wei, Q., Du, Y.: Quenching of the intrinsic fluorescence of bovine serum albumin by phenylfluorone–Mo(VI) complex as a probe. Int. J. Biol. Macromol. 37, 69–72 (2005)

    Article  CAS  Google Scholar 

  26. Burstein, E.A., Vedenkina, N.S., Ivkova, M.N.: Fluorescence and the location of tryptophan residues in protein molecules. Photochem. Photobiol. 18, 263–279 (1973)

    Article  CAS  Google Scholar 

  27. Paramaguru, G., Kathiravan, A., Selvaraj, S., Venuvanalingam, P.: Interaction of anthraquinone dyes with lysozyme: evidences from spectroscopic and docking studies. J. Hazard. Mater. 175, 985–991 (2010)

    Article  CAS  Google Scholar 

  28. Gong, A.Q., Zhu, X.S., Hu, Y.Y., Yu, S.H.: A fluorescence spectroscopic study of the interaction between epristeride and bovin serum albumin and its analytical application. Talanta 73, 668–673 (2007)

    Article  CAS  Google Scholar 

  29. Wei, Y.L., Li, J.Q., Dong, C., Shuang, S.M., Liu, D.S.: Investigation of the association behaviors between biliverdin and bovine serum albumin by fluorescence spectroscopy. Talanta 70, 377–382 (2006)

    Article  CAS  Google Scholar 

  30. Li, L., Wang, Y., Song, G., Wu, S., Chu, P.K., Xu, Z.: Bonding strength of fluorinated and hydrogenated surfactant to bovine serum albumin. J. Fluorine Chem. 130, 870–877 (2009)

    Article  CAS  Google Scholar 

  31. Tu, S., Jiang, X., Zhou, L., Yin, W., Wang, H., Duan, M., Liu, P., Jiang, X.: Study of the interaction of gemini surfactant NAE12-4-12 with bovine serum albumin. J. Lumin. 132, 381–385 (2012)

    Article  CAS  Google Scholar 

  32. Ashoka, S., Seetharamappa, J., Kandagal, P.B., Shaikh, S.M.T.: Investigation of the interaction between trazodone hydrochloride and bovine serum albumin. J. Lumin. 121, 179–186 (2006)

    Article  CAS  Google Scholar 

  33. Wang, H., Jiang, X., Zhou, L., Cheng, Z., Yin, W., Duan, M., Liu, P., Jiang, X.: Interaction of NAEn-s-n gemini surfactants with bovine serum albumin: a structure-activity probe. J. Lumin. 134, 138–147 (2013)

    Article  CAS  Google Scholar 

  34. Cheng, Z.J., Zhang, Y.T.: Spectroscopic investigation on interaction of the bioactive component dl-tetrahydropalmatine to bovine serum albumin. J. Mol. Struct. 876, 308–312 (2008)

    Article  CAS  Google Scholar 

  35. Sarkar, M., Paul, S.S., Mukherjea, K.K.: Interaction of bovine serum albumin with a psychotropic drug alprazolam: physicochemical, photophysical and molecular docking studies. J. Lumin. 142, 220–230 (2013)

    Article  CAS  Google Scholar 

  36. Ross, P.D., Subramanian, S.: Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20, 3096–3102 (1981)

    Article  CAS  Google Scholar 

  37. Cheng, Z.J.: Interaction of ergosterol with bovine serum albumin and human serum albumin by spectroscopic analysis. Mol. Biol. Rep. 39, 9493–9508 (2012)

    Article  CAS  Google Scholar 

  38. Cristobel, G., Dos, R., Pierre, D.J.M.: Fluorescence resonance energy transfer spectroscopy reliable “ruler” for measuring structural changes in proteins. J. Struct. Biol. 115, 175–185 (1995)

    Article  Google Scholar 

  39. Qin, Y., Zhang, Y., Yan, S., Ye, L.: A comparison study on the interaction of hyperoside and bovine serum albumin with Tachiya model and Stern–Volmer equation. Spectrochim. Acta A 75, 1506–1510 (2010)

    Article  Google Scholar 

  40. Kumar, R.S., van den Bergh, H., Wagnières, G.: Probing the interaction between a surfactant–cobalt (III) complex and bovine serum albumin. J. Solution Chem. 41, 294–306 (2012)

    Article  Google Scholar 

  41. Guo, X.J., Hao, A.J., Han, X.W., Kang, P.L., Jiang, Y.C., Zhang, X.J.: The investigation of the interaction between ribavirin and bovine serum albumin by spectroscopic methods. Mol. Biol. Rep. 38, 4185–4192 (2011)

    Article  CAS  Google Scholar 

  42. Yu, X., Liu, R., Yang, F., Ji, D., Li, X., Chen, J., Huang, H., Yi, P.: Study on the interaction between dihydromyricetin and bovine serum albumin by spectroscopic techniques. J. Mol. Struct. 985, 407–412 (2011)

    Article  CAS  Google Scholar 

  43. Wang, C.X., Yan, F.F., Zhang, Y.X., Ye, L.: Spectroscopic investigation of the interaction between rifabutin and bovine serum albumin. J. Photochem. Photobiol. A 192, 23–28 (2007)

    Article  CAS  Google Scholar 

  44. Chen, J., Jiang, X.Y., Chen, X.Q., Chen, Y.: Effect of temperature on the metronidazole–BSA interaction: multi–spectroscopic method. J. Mol. Struct. 876, 121–126 (2008)

    Article  CAS  Google Scholar 

  45. Kandagal, P.B., Seetharamappa, J., Shaikh, S.M.T., Manjunatha, D.H.: Binding of trazodone hydrochloride with human serum albumin: a spectroscopic study. J. Photochem. Photobiol. A 185, 239–244 (2007)

    Article  CAS  Google Scholar 

  46. Zhu, G.F., Wang, Y., Liu, J., Wang, H., Xi, L., Du, L.F.: Interaction between ginkgolic acid and human serum albumin by spectroscopy and molecular modeling methods. J. Solution Chem. 43, 1232–1249 (2014)

    Article  CAS  Google Scholar 

  47. Li, J.F., Li, J.Z., Jiao, Y., Dong, C.: Spectroscopic analysis and molecular modeling on the interaction of jatrorrhizine with human serum albumin (HSA). Spectrochim. Acta A 118, 48–54 (2014)

    Article  CAS  Google Scholar 

  48. Shahabadi, N., Maghsudi, M.: Binding studies of a new copper(II) complex containing mixed aliphatic and aromatic dinitrogen ligands with bovine serum albumin using different instrumental methods. J. Mol. Struct. 929, 193–199 (2009)

    Article  CAS  Google Scholar 

  49. Hu, Y.J., Liu, Y., Shen, X.S., Fang, X.Y., Qu, S.S.: Studies on the interaction between 1-hexylcarbamoyl-5-fluorouracil and bovine serum albumin. J. Mol. Struct. 738, 143–147 (2005)

    Article  CAS  Google Scholar 

  50. Mandal, G., Bardhan, M., Ganguly, T.: Interaction of bovine serum albumin and albumin–gold nanoconjugates with l-aspartic acid. a spectroscopic approach. Colloids Surf. B 81, 178–184 (2010)

    Article  CAS  Google Scholar 

  51. Hu, Y.J., Yue, H.L., Li, X.L., Zhang, S.S.: Molecular spectroscopic studies on the interaction of morin with bovine serum albumin. J. Photochem. Photobiol. B 112, 16–22 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science Research Project of the Ministry of Education of Heilongjiang Province of China (2012TD012, 12511Z030), the National Natural Science Foundation of Heilongjiang Province (B201114, B201313) and the Science Research Project of Key Laboratory of Fine Chemicals of College of Heilongjiang Province of China (JX201210).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangfeng Guo or Lihua Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Guo, X., Feng, Z. et al. Spectroscopic Investigation of the Interaction of Pyridinium Surfactant with Bovine Serum Albumin. J Solution Chem 44, 293–306 (2015). https://doi.org/10.1007/s10953-015-0304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0304-6

Keywords

Navigation