Skip to main content
Log in

Densities of Pure Ionic Liquids and Mixtures: Modeling and Data Analysis

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Our two-parameter corresponding states model for liquid densities and compressibilities has been extended to more pure ionic liquids and to their mixtures with one or two solvents. A total of 19 new group contributions (5 new cations and 14 new anions) have been obtained for predicting pressure effects over wide ranges of temperature and pressure. Comparisons of the technique with contemporary treatments based on equations of state show that it compares favorably with all other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a :

Parameter in Eq. 6

B :

Bulk modulus, defined by Eq. 1 and as in Eq. 2

b :

Parameter in Eq. 6

b ij :

Matrix of values resembling virial coefficients for pure components

C :

Direct correlation function integral, as in Eq. 2

c :

Centers direct correlation function, as in Eq. 2

c i :

(Singly subscripted) parameter in Eq. 20

k ij :

(Doubly) subscripted parameter for reduced temperatures

p :

(Absolute) pressure

r :

Radial distance

R :

Gas constant

T :

(Absolute) temperature

V :

(Molar) volume

x i :

Mole fraction, species i

α i :

(Singly) subscripted parameter in Eq. 17

β i :

(Singly) subscripted parameter in Eq. 17

δ:

Residual

Δ:

Group contribution to characteristic volumes

ρ :

Density

κ :

Compressibility

ξ :

Hard-spheres density, Eq. 24

σ :

Molecular diameter, Eq. 24

ν :

Group stoichiometry arrays

i,j :

Molecule i and/or j designator(s)

T :

Isothermal

est:

Estimated from group contributions

exp:

Determined from experimental data

ref:

On property evaluated at reference conditions

*:

Characteristic value (of T and V)

~:

Reduced quantity

#:

Used (and explained) in tables for distinction among cases

hs:

Hard sphere value

AAPE(p):

Absolute average percentage error (on p)

AAPE(ρ):

Absolute average percentage error (on ρ)

DCFI:

Direct correlation function integral

SSp :

Sum of squared errors on p

SSV :

Sum of squared errors on V

SSMV :

Sum of squares on mixture volume

References

  1. Coutinho, J.A.P., Carvalho, P.J., Oliveira, N.M.C.: Predictive methods for the estimation of thermophysical properties of ionic liquids. RSC Adv. 2, 7322–7346 (2012)

    CAS  Google Scholar 

  2. Vega, L.F., Vilaseca, O., Llovell, F., Andreu, J.S.: Modeling ionic liquids and the solubility of gases in them: recent advances and perspectives. Fluid Phase Equilib. 294, 15–30 (2010)

    CAS  Google Scholar 

  3. Hofman, T., Gołdon, A., Nevines, A., Letcher, T.M.: Densities, excess volumes, isobaric expansivity, and isothermal compressibility of the (1-ethyl-3-methylimidazolium ethylsulfate + methanol) system at temperatures (283.15 to 333.15) K and pressures from (0.1 to 35) MPa. J. Chem. Thermodyn. 40, 580–591 (2008)

    CAS  Google Scholar 

  4. Maia, F.M., Tsivintzelis, I., Rodriguez, O., Macedo, E.A., Kontogeorgis, G.M.: Equation of state modelling of systems with ionic liquids: literature review and application with the cubic plus association (CPA) model. Fluid Phase Equilib. 332, 128–143 (2012)

    CAS  Google Scholar 

  5. Ji, X., Held, C., Sadowski, G.: Modeling imidazolium-based ionic liquids with ePC-SAFT. Fluid Phase Equilib. 335, 64–73 (2012)

    CAS  Google Scholar 

  6. Polishuk, I.: Implementation of perturbed-chain statistical associating fluid theory (PC-SAFT), generalized (G) SAFT + cubic, and cubic-plus-association (CPA) for modeling thermophysical properties of selected 1-alkyl-3-methylimidazolium ionic liquids in a wide pressure range. J. Phys. Chem. A 117, 2223–2232 (2013)

    CAS  Google Scholar 

  7. Llovell, F., Valente, E., Vilaseca, O., Vega, L.F.: Modeling complex associating mixtures with [C n -mim][Tf2N] ionic liquids: predictions from the soft-SAFT equation. J. Phys. Chem. B 115, 4387–4398 (2011)

    CAS  Google Scholar 

  8. Paduszynski, K., Domanska, U.: A new group contribution method for prediction of density of pure ionic liquids over a wide range of temperature and pressure. Ind. Eng. Chem. Res. 51, 591–604 (2012)

    CAS  Google Scholar 

  9. Abildskov, J., Ellegaard, M.D., O’Connell, J.P.: Correlation of phase equilibria and liquid densities for gases with ionic liquids. Fluid Phase Equilib. 286, 95–106 (2009)

    Google Scholar 

  10. Abildskov, J., Ellegaard, M.D., O’Connell, J.P.: Densities and isothermal compressibilities of ionic liquids—modeling and application. Fluid Phase Equilib. 295, 215–229 (2010)

    CAS  Google Scholar 

  11. Abildskov, J., Ellegaard, M.D., O’Connell, J.P.: Phase behavior of mixtures of ionic liquids and organic solvents. J. Supercrit. Fluids 55, 833–845 (2010)

    CAS  Google Scholar 

  12. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids. The McGraw-Hill, Inc, New York (2000)

    Google Scholar 

  13. Kirkwood, J.G., Buff, F.P.: The statistical mechanical theory of solutions. I. J. Chem. Phys. 19, 774–778 (1951)

    CAS  Google Scholar 

  14. O’Connell, J.P.: Thermodynamic properties of solutions based on correlation functions. Mol. Phys. 20, 27–33 (1971)

    Google Scholar 

  15. Gray, C.G., Gubbins, K.E.: Theory of Molecular Fluids. Vol. 1: Fundamentals. Oxford University Press, Oxford (1984)

    Google Scholar 

  16. Mathias, P.M., O’Connell, J.P.: A predictive method for PVT and phase behavior of liquids containing supercritical components. Adv. Chem. Ser. 182, 97–108 (1979)

    CAS  Google Scholar 

  17. O’Connell, J.P.: Thermodynamic properties of solutions and the theory of fluctuations. Fluid Phase Equilib. 6, 21–38 (1981)

    Google Scholar 

  18. Campanella, E.A., Mathias, P.M., O’Connell, J.P.: Equilibrium properties of liquids containing supercritical substances. AIChE J. 33, 2057–2066 (1987)

    CAS  Google Scholar 

  19. Mathias, P.M.: Thermodynamic properties of high-pressure liquid mixtures containing supercritical components. Ph.D. Thesis, University of Florida (1978)

  20. Mathias, P.M., O’Connell, J.P.: Molecular thermodynamics of liquids containing supercritical compounds. Chem. Eng. Sci. 36, 1123–1132 (1981)

    CAS  Google Scholar 

  21. Isdale, J.D., Dymond, J.H., Brawn, T.A.: Viscosity and density of n-hexane–cyclohexane mixtures between 25 and 100 °C up to 500 MPa. High Temp. High Press 11, 571–580 (1979)

    CAS  Google Scholar 

  22. Taguchi, R., Machida, H., Sato, Y., Smith Jr, R.L.: High-pressure densities of 1-alkyl-3-methylimidazolium hexafluorophosphates and 1-alkyl-3-methylimidazolium tetrafluoroborates at temperatures from (313 to 473) K and at pressures up to 200 MPa. J. Chem. Eng. Data 54, 22–27 (2009)

    CAS  Google Scholar 

  23. Krolikowski, M., Hofman, T.: Densities, isobaric expansivities and isothermal compressibilities of the thiocyanate-based ionic liquids at temperatures (298.15–338.15 K) and pressures up to 10 MPa. Thermochim. Acta 530, 1–6 (2012)

    Google Scholar 

  24. Hosseini, S.M., Papari, M.M., Moghadasi, J.: Density and isothermal compressibility of ionic liquids from perturbed hard-sphere chain equation of state. J. Mol. Liq. 174, 52–57 (2012)

    CAS  Google Scholar 

  25. Hosseini, S.M., Alavianmehr, M.M., Moghadasi, J.: Density and isothermal compressibility of ionic liquids from perturbed hard-dimer-chain equation of state. Fluid Phase Equilib. 356, 185–192 (2013)

    CAS  Google Scholar 

  26. Kang, J.W., Diky, V., Chirico, R.D., Magee, J.W., Muzny, C.D., Abdulagatov, I., Kazakov, A.F., Frenkel, M.: Quality assessment algorithm for vapor–liquid equilibrium data. J. Chem. Eng. Data 55, 3631–3640 (2010)

    CAS  Google Scholar 

  27. Ma, J., Li, J., Fan, D., Peng, C., Lio, H., Hu, Y.: Modeling pVT properties and vapor–liquid equilibrium of ionic liquids using cubic-plus-association equation of state. Chinese J. Chem. Eng. 19, 1009–1016 (2011)

    CAS  Google Scholar 

  28. Machida, H., Sato, Y., Smith Jr, R.L.: Simple modification of the temperature dependence of the Sanchez-Lacombe equation of state. Fluid Phase Equilib. 297, 205–209 (2010)

    CAS  Google Scholar 

  29. Evangelista, N.S., Do Carmo, F.R., De Santiago-Aguiar, R.S., De Sant’Ana, H.B.: Development of a new group contribution method based on GCVOL model for the estimation of pure ionic liquid density over a wide range of temperature and pressure. Ind. Eng. Chem. Res. 53, 9506–9512 (2014)

    CAS  Google Scholar 

  30. Xiong, Y., Ding, J., Yu, D., Peng, C., Liu, H.: Group contribution methods for prediction of thermophysical properties and phase behavior of ionic liquids. Huagong Xuebao/CIESC J. 63, 667–676 (2012)

    CAS  Google Scholar 

  31. Elbro, H.S., Fredenslund, Aa, Rasmussen, P.: Group contribution method for the prediction of liquid densities as a function of temperature for solvents, oligomers, and polymers. Ind. Eng. Chem. Res. 30, 2576–2582 (1991)

    CAS  Google Scholar 

  32. Constantinou, L., Gani, R., O’Connell, J.P.: Estimation of the acentric factor and the liquid molar volume at 298 K using a new group-contribution method. Fluid Phase Equilib. 103(1), 11–22 (1995)

    CAS  Google Scholar 

  33. Bondi, A.: Physical Properties of Molecular Crystals, Liquids, and Glasses. Wiley, New York (1968)

    Google Scholar 

  34. Gardas, R.L., Coutinho, J.A.P.: Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures. Fluid Phase Equilibr. 263, 26–32 (2008)

    CAS  Google Scholar 

  35. Hosseini, S.M., Moghadasi, J., Papari, M.M., Fadaei-Nobandegani, F.: Modeling the volumetric properties of ionic liquids using modified perturbed hard-sphere equation of state: application to pure and binary mixtures. Ind. Eng. Chem. Res. 51, 758–766 (2012)

    Google Scholar 

  36. Jacquemin, J., Nancarrow, P., Rooney, D.W., Costa Gomes, M.F., Husson, P.V., Majer, V., Pádua, A.A.H., Hardacre, C.: Prediction of ionic liquid properties. II. Volumetric properties as a function of temperature and pressure. J. Chem. Eng. Data 53, 2133–2143 (2008)

    CAS  Google Scholar 

  37. Gu, Z., Brennecke, J.F.: Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. J. Chem. Eng. Data 47, 339–345 (2002)

    CAS  Google Scholar 

  38. Ji, X., Adidharma, H.: Thermodynamic modeling of ionic liquid density with heterosegmented statistical associating fluid theory. Chem. Eng. Sci. 64, 1985–1992 (2009)

    CAS  Google Scholar 

  39. Reed, T.M., Gubbins, K.E.: Applied Statistical Mechanics. McGraw-Hill, New York (1973)

    Google Scholar 

  40. Alavianmehr, M.M., Hosseini, S.M., Amighi, S.: Volumetric properties of ionic liquids and their binary mixtures from improved Tao-Mason equation of state. J. Mol. Liq. 191, 166–171 (2014)

    CAS  Google Scholar 

  41. Hosseini, S.M., Alavianmehr, M.M., Mohammad-Aghaie, D., Fadaei-Nobandegani, F., Moghadasi, J.: Volumetric properties of ionic liquids from cubic equation of state: application to pure and mixture. J. Ind. Eng. Chem. 19, 769–775 (2013)

    CAS  Google Scholar 

  42. Papari, M.M., Amighi, S., Kiani, M., Mohammad-Aghaie, D., Haghighi, B.: Modification of a statistical mechanically-based equation of state: application to ionic liquids. J. Molecular Liq. 175, 61–66 (2012)

    CAS  Google Scholar 

  43. Papari, M.M., Hosseini, S.M., Fadaei-Nobandegani, F., Moghadasi, J.: Modeling of P-ρ-T properties of ionic liquids using ISM equation of state: application to pure component and binary mixtures. Korean J. Chem. Eng. 29, 1628–1637 (2012)

    CAS  Google Scholar 

  44. Hosseini, S.M., Sharafi, Z.: Improved equation of state for ionic liquids using surface tension. Ionics 17, 511–516 (2011)

    CAS  Google Scholar 

  45. Mousazadeh, M.H., Diarmand, H., Hakimelahi, R.: Correlation densities of ionic liquids based on perturbed Yukawa chain equation of state. Phys. Chem. Liq. 51, 33–43 (2013)

    CAS  Google Scholar 

  46. Fadaei-Nobandegani, F., Hosseini, S.M., Papari, M.M., Moghadasi, J.: Volumetric properties of mixtures involving ionic liquids from improved equation of state. Thermochim. Acta 546, 94–101 (2012)

    CAS  Google Scholar 

  47. Wang, J., Li, Z., Li, C., Wang, Z.: Density prediction of ionic liquids at different temperatures and pressures using a group contribution equation of state based on electrolyte perturbation theory. Ind. Eng. Chem. Res. 49, 4420–4425 (2010)

    CAS  Google Scholar 

  48. Tomé, L.I.N., Carvalho, P.J., Freire, M.G., Marrucho, I.M., Fonseca, I.M.A., Ferreira, A.G.M., Coutinho, J.A.P., Gardas, R.L.: Measurements and correlation of high-pressure densities of imidazolium-based ionic liquids. J. Chem. Eng. Data 53, 1914–1921 (2008)

    Google Scholar 

  49. Gołdon, A., Daübrowska, K., Hofman, T.: Densities and excess volumes of the 1,3-dimethylimidazolium methylsulfate + methanol system at temperatures from (313.15 to 333.15) K and pressures from (0.1 to 25) MPa. J. Chem. Eng. Data 52, 1830–1837 (2007)

    Google Scholar 

  50. Matkowska, D., Goldon, A., Hofman, T.: Densities, excess volumes, isobaric expansivities, and isothermal compressibilities of the 1-ethyl-3-methylimidazolium ethylsulfate + ethanol system at temperatures (283.15 to 343.15) K and pressures from (0.1 to 35) MPa. J. Chem. Eng. Data 55, 685–693 (2010)

    CAS  Google Scholar 

  51. Tomida, D., Kenmochi, S., Tsukada, T., Qiao, K., Yokoyama, C.: Thermal conductivities of [bmim][PF6], [hmim][PF6], and [omim][PF6] from 294 to 335 K at pressures up to 20 MPa. Int. J. Thermophys. 28, 1147–1160 (2007)

    CAS  Google Scholar 

  52. Tomida, D., Kumagai, A., Kenmochi, S., Qiao, K., Yokoyama, C.: Viscosity of 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-octyl-3-methylimidazolium hexafluorophosphate at high pressure. J. Chem. Eng. Data 52, 577–579 (2007)

    CAS  Google Scholar 

  53. Rebelo, L.P.N., Najdanovic-Visak, V., Visak, Z.P., Nunes da Ponte, M., Szydlowski, J., Cerdeiriña, C.A., Troncoso, J., Romaní, J., Esperança, J.M.S.S., Guedes, H.J.R., de Sousa, H.C.: A detailed thermodynamic analysis of [C4mim][BF4] + water as a case study to model ionic liquid aqueous solutions. Green Chem. 6, 369–381 (2004)

    CAS  Google Scholar 

  54. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the lonic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: viscosity and density relationships in ionic liquids. J. Chem. Eng. Data 52, 2425–2430 (2007)

    CAS  Google Scholar 

  55. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: viscosity and density relationships in ionic liquids. J. Chem. Eng. Data 53, 1230 (2008)

    CAS  Google Scholar 

  56. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate. J. Chem. Eng. Data 51, 1161–1167 (2006)

    CAS  Google Scholar 

  57. Tomé, L.I.N., Gardas, R.L., Carvalho, P.J., Pastoriza-Gallego, M.J., Piñeiro, M.M., Coutinho, J.A.P.: Measurements and correlation of high-pressure densities of phosphonium pased ionic liquids. J. Chem. Eng. Data 56, 2205–2217 (2011)

    Google Scholar 

  58. Gonçalves, F.A.M.M., Costa, C.S.M.F., Ferreira, C.E., Bernardo, J.C.S., Johnson, I., Fonseca, I.M.A., Ferreira, A.G.M.: Pressure–volume–temperature measurements of phosphonium-based ionic liquids and analysis with simple equations of state. J. Chem. Thermodyn. 43, 914–929 (2011)

    Google Scholar 

  59. Ferreira, C.E., Talavera-Prieto, N.M.C., Fonseca, I.M.A., Portugal, A.T.G., Ferreira, A.G.M.: Measurements of pVT, viscosity, and surface tension of trihexyltetradecylphosphonium tris(pentafluoroethyl)trifluorophosphate ionic liquid and modelling with equations of state. J. Chem. Thermodyn. 47, 183–196 (2012)

    CAS  Google Scholar 

  60. Guerrero, H., Martín, S., Pérez-Gregorio, V., Lafuente, C., Bandrés, I.: Volumetric characterization of pyridinium-based ionic liquids. Fluid Phase Equilib. 317, 102–109 (2012)

    CAS  Google Scholar 

  61. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Chem. Eng. Data 52, 1080–1085 (2007)

    CAS  Google Scholar 

  62. Matkowska, D., Hofman, T.: High-pressure volumetric properties of ionic liquids: 1-butyl-3-methylimidazolium tetrafluoroborate, [C4mim][BF4], 1-butyl-3-methylimidazolium methylsulfate [C4mim][MeSO4] and 1-ethyl-3-methylimidazolium ethylsulfate, [C2mim][EtSO4]. J. Mol. Liq. 165, 161–167 (2012)

    CAS  Google Scholar 

  63. Nieto de Castro, C.A., Langa, E., Morais, A.L., Matos Lopes, M.L., Lourenco, M.J.V., Santos, F.J.V., Santos, M.S.C.S., Canongia Lopes, J.N., Veiga, H.I.M., Macatrão, M., Esperanca, J.M.S.S., Marques, C.S., Rebelo, L.P.N., Afonso, C.A.M.: Studies on the density, heat capacity, surface tension and infinite dilution diffusion with the ionic liquids [C4mim][NTf2], [C4mim][dca], [C2mim][EtOSO3] and [Aliquat][dca]. Fluid Phase Equilib. 294, 157–179 (2010)

    CAS  Google Scholar 

  64. Aparicio, S., Alcalde, R., Garcia, B., Leal, J.M.: High-pressure study of the methylsulfate and tosylate imidazolium ionic liquids. J. Phys. Chem. B 113, 5593–5606 (2009)

    CAS  Google Scholar 

  65. Sanmamed, Y.A., González-Salgado, D., Troncoso, J., Romani, L., Baylaucq, A., Boned, C.: Experimental methodology for precise determination of density of RTILs as a function of temperature and pressure using vibrating tube densimeters. J. Chem. Thermodyn. 42, 553–563 (2010)

    CAS  Google Scholar 

  66. Widowati, E., Lee, M.-J.: P-V–T properties of binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with anisole or acetophenone at elevated pressures. J. Chem. Thermodyn. 63, 95–101 (2013)

    CAS  Google Scholar 

  67. Regueira, T., Lugo, L., Fernández, J.: High pressure volumetric properties of 1-ethyl-3-methylimidazolium ethylsulfate and 1-(2-methoxyethyl)-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodyn. 48, 213–220 (2012)

    CAS  Google Scholar 

  68. Regueira, T., Lugo, L., Fernández, J.: Influence of the pressure, temperature, cation and anion on the volumetric properties of ionic liquids: new experimental values for two salts. J. Chem. Thermodyn. 58, 440–448 (2013)

    CAS  Google Scholar 

  69. Guerrero, H., García-Mardones, M., Cea, P., Lafuente, C., Bandrés, I.: Correlation of the volumetric behaviour of pyridinium-based ionic liquids with two different equations. Thermochim. Acta 531, 21–27 (2012)

    CAS  Google Scholar 

  70. Talavera-Prieto, N.M.C., Ferreira, A.G.M., Simões, P.N., Carvalho, P.J., Mattedi, S., Coutinho, J.A.P.: Thermophysical characterization of N-methyl-2-hydroxyethylammonium carboxilate ionic liquids. J. Chem. Thermodyn. 68, 221–234 (2014)

    CAS  Google Scholar 

  71. Tomida, D., Kenmochi, S., Qiao, K., Tsukada, T., Yokoyama, C.: Densities and thermal conductivities of N-alkylpyridinium tetrafluoroborates at high pressure. Fluid Phase Equilib. 340, 31–36 (2013)

    CAS  Google Scholar 

  72. Dávila, M.J., Aparicio, S., Alcalde, R., García, B., Leal, J.M.: On the properties of 1-butyl-3-methylimidazolium octylsulfate ionic liquid. Green Chem. 9, 221–232 (2007)

    Google Scholar 

  73. Matkowska, D., Hofman, T.: Volumetric properties of the x1[C4mim][MeSO4] + (1–x1)MeOH system at temperatures from (283.15 to 333.15) K and pressures from (0.1 to 35) MPa. J. Solution Chem. 42, 979–990 (2013)

    CAS  Google Scholar 

  74. Domanska, U., Pobudkowska, A., Wisniewska, A.: Solubility and excess molar properties of 1,3-dimethylimidazolium methylsulfate, or 1-butyl-3-methylimidazolium methylsulfate, or 1-butyl-3-methylimidazolium octylsulfate ionic liquids with n-alkanes and alcohols: analysis in terms of the PFP and FBT models. J. Solution Chem. 35, 311–334 (2006)

    CAS  Google Scholar 

  75. Garcia-Miaja, G., Troncoso, J., Romaní, L.: Density and heat capacity as a function of temperature for binary mixtures of 1-butyl-3-methylpyridinium tetrafluoroborate + water, + ethanol, and + nitromethane. J. Chem. Eng. Data 52, 2261–2265 (2007)

    CAS  Google Scholar 

  76. Wandschneider, A., Lehmann, J.K., Heintz, A.: Surface tension and density of pure ionic liquids and some binary mixtures with 1-propanol and 1-butanol. J. Chem. Eng. Data 53, 596–599 (2008)

    CAS  Google Scholar 

  77. González, B., Calvar, N., Gómez, E., Domínguez, Á.: Physical properties of the ternary system (ethanol + water + 1-butyl-3-methylimidazolium methylsulphate) and its binary mixtures at several temperatures. J. Chem. Thermodyn. 40, 1274–1281 (2008)

    Google Scholar 

  78. Pereiro, A.B., Tojo, E., Rodriguez, A., Canosa, J., Tojo, J.: Properties of ionic liquid HMIMPF6 with carbonates, ketones and alkyl acetates. J. Chem. Thermodyn. 38, 651–661 (2006)

    CAS  Google Scholar 

  79. Iglesias-Otero, M.A., Troncoso, J., Carballo, E., Romaní, L.: Density and refractive index for binary systems of the ionic liquid [bmim][BF4] with methanol, 1,3-dichloropropane, and dimethyl carbonate. J. Solution Chem. 36, 1219–1230 (2007)

    CAS  Google Scholar 

  80. Lugo, L., Comuñas, M.J.P., López, E.R., Fernández, J.: (p, Vm, T, x) measurements of dimethyl carbonate + octane binary mixtures I. Experimental results, isothermal compressibilities, isobaric expansivities and internal pressures. Fluid Phase Equilibr. 186, 235–255 (2001)

    CAS  Google Scholar 

  81. Matsuo, S., Makita, T.: Volumetric properties of 1-alkanols at temperatures in the range 298–348 K and pressures up to 40 MPa. Int. J. Thermophys. 10, 885–897 (1989)

    CAS  Google Scholar 

  82. Uosaki, Y., Matsumura, H., Wakasa, S., Moriyoshi, T.: Compressions of nitro-compounds at pressures up to 150 MPa and at the temperatures 298.15 K and 323.15 K. J. Chem. Thermodyn. 22, 313–318 (1990)

    CAS  Google Scholar 

  83. Gupta, A.C., Hanks, R.W.: Liquid phase PVT data for binary mixtures of toluene with nitroethane and acetone, and benzene with acetonitrile, nitromethane, and ethanol. Thermochim. Acta 21, 143–152 (1977)

    CAS  Google Scholar 

  84. Garg, S.K., Banipal, T.S., Ahluwalia, J.C.: Densities, molar volumes, cubic expansion coefficients, and isothermal compressibilities of 1-alkanols from 323.15 To 373.15 K and at pressures up to 10 MPa. J. Chem. Eng. Data 38, 227–230 (1993)

    CAS  Google Scholar 

  85. Abdulagatov, I.M., Tekin, A., Safarov, J., Shahverdiyev, A., Hassel, E.: Densities and excess, apparent, and partial molar volumes of binary mixtures of bmimBF4 + ethanol as a function of temperature, pressure, and concentration. Int. J. Thermophys. 29, 505–533 (2008)

    CAS  Google Scholar 

  86. Klomfar, J., Soucková, M., Pátek, J.: Experimental p-ρ-T data for 1-butyl-3-methylimidazolium tetrafluoroborate at temperatures from (240 to 353) K and at pressures up to 60 MPa. J. Chem. Eng. Data 56, 426–436 (2011)

    CAS  Google Scholar 

  87. Safarov, J., El-Awady, W.A., Shahverdiyev, A., Hassel, E.: Thermodynamic properties of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Chem. Eng. Data 56, 106–112 (2011)

    CAS  Google Scholar 

  88. Machida, H., Taguchi, R., Sato, Y., Smith Jr, R.L.: Measurement and correlation of high pressure densities of ionic liquids, 1-ethyl-3-methylimidazolium L-lactate ([emim][lactate]), 2-hydroxyethyl-trimethylammonium L-lactate ([(C2H4OH)(CH3)3N][lactate]), and 1-butyl-3-methylimidazolium chloride ([bmim][Cl]). J. Chem. Eng. Data 56, 923–928 (2011)

    CAS  Google Scholar 

  89. Schmidt, H., Stephan, M., Safarov, J., Kul, I., Nocke, J., Abdulagatov, I.M., Hassel, E.: Experimental study of the density and viscosity of 1-ethyl-3-methylimidazolium ethyl sulfate. J. Chem. Thermodyn. 47, 68–75 (2012)

    CAS  Google Scholar 

  90. Safarov, J., Hassel, E.: Thermodynamic properties of 1-hexyl-3-methylimidazolium tetrafluoroborate. J. Mol. Liq. 153, 153–158 (2012)

    Google Scholar 

  91. Klomfar, J., Soucková, M., Patek, J.: P–ρ–T measurements for 1-ethyl and 1-butyl-3-methylimidazolium dicyanamides from their melting temperature to 353 K and up to 60 MPa in pressure. J. Chem. Eng. Data 57, 1213–1221 (2012)

    CAS  Google Scholar 

  92. Safarov, J., Kul, I., El-Awady, W.A., Shahverdiyev, A., Hassel, E.: Thermodynamic properties of 1-butyl-3-methylpyridinium tetrafluoroborate. J. Chem. Thermodyn. 43, 1315–1322 (2011)

    CAS  Google Scholar 

  93. Safarov, J., Hamidova, R., Zepik, S., Schmidt, H., Kul, I., Shahverdiyev, A., Hassel, E.: Thermophysical properties of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide at high temperatures and pressures. J. Mol. Liq. 187, 137–156 (2013)

    CAS  Google Scholar 

  94. Engelmann, M., Schmidt, H., Safarov, J., Nocke, J., Hassel, E.: Thermal properties of 1-butyl-3-methylimidazolium dicyanamide at high pressures and temperatures. Acta Chim. Slov. 5, 86–94 (2012)

    Google Scholar 

  95. Safarov, J., Kul, I., El-Awady, W.A., Nocke, J., Shahverdiyev, A., Hassel, E.: Thermophysical properties of 1-butyl-4-methylpyridinium tetrafluoroborate. J. Chem. Thermodyn. 51, 82–87 (2012)

    CAS  Google Scholar 

  96. Iguchi, M., Hiraga, Y., Sato, Y., Aida, T.M., Watanabe, M., Smith Jr, R.L.: Measurement of high-pressure densities and atmospheric viscosities of ionic liquids: 1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-hexyl-3-methylimidazolium chloride. J. Chem. Eng. Data 59, 709–717 (2014)

    CAS  Google Scholar 

  97. Abdulagatov, I.M., Safarov, J., Guliyev, T., Shahverdiyev, A., Hassel, E.: High temperature and high pressure volumetric properties of (methanol + [BMIM+][OcSO4 ]) mixtures. Phys. Chem. Liq. 47, 9–34 (2009)

    CAS  Google Scholar 

  98. Klomfar, J., Soucková, M., Pátek, J.: PρT measurements for 1-alkyl-3-methylimidazolium-based ionic liquids with tetrafluoroborate and a trifluoromethanesulfonate anion. J. Chem. Eng. Data 57, 708–720 (2012)

    CAS  Google Scholar 

  99. Deenadayalu, N., Kumar, S., Bhuirajh, P.: Liquid densities and excess molar volumes for (ionic liquids + methanol + water) ternary system at atmospheric pressure and at various temperatures. J. Chem. Thermodyn. 39, 1318–1324 (2007)

    CAS  Google Scholar 

  100. Gómez, E., González, B., Calvar, N., Domínguez, Á.: Excess molar properties of ternary system (ethanol + water + 1,3-dimethylimidazolium methylsulphate) and its binary mixtures at several temperatures. J. Chem. Thermodyn. 40, 1208–1216 (2008)

    Google Scholar 

  101. Andreatta, A.E., Arce, A., Rodil, E., Soto, A.: Physical properties of binary and ternary mixtures of ethyl acetate, ethanol, and 1-octyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide at 298.15 K. J. Chem. Eng. Data 54, 1022–1028 (2009)

    CAS  Google Scholar 

  102. Andreatta, A.E., Arce, A., Rodil, E., Soto, A.: Physico-chemical properties of binary and ternary mixtures of ethyl acetate + ethanol + 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide at 298.15 K and atmospheric pressure. J. Solution Chem. 39, 371–383 (2010)

    CAS  Google Scholar 

  103. Deenadayalu, N., Bahadur, I., Hofman, T.: Volumetric properties for (ionic liquid + methanol or ethanol or 1-propanol + nitromethane) at 298.15 K and atmospheric pressure. J. Chem. Eng. Data 56, 1682–1686 (2011)

    CAS  Google Scholar 

  104. Esperanca, J.M.S.S., Visak, Z.P., Plechkova, N.V., Seddon, K.R., Guedes, H.J.R., Rebelo, L.P.N.: Density, speed of sound, and derived thermodynamic properties of ionic liquids over an extended pressure range. 4. [C3mim][NTf2] and [C5mim][NTf2]. J. Chem. Eng. Data 51, 2009–2015 (2006)

    CAS  Google Scholar 

  105. de Gomes Azevedo, R., Esperanca, J.M.S.S., Szydlowski, J., Visak, Z.P., Pires, P.F., Guedes, H.J.R., Rebelo, L.P.N.: Thermophysical and thermodynamic properties of ionic liquids over an extended pressure range: [bmim][NTf2] and [hmim][NTf2]. J. Chem. Thermodyn. 37, 888–899 (2005)

    Google Scholar 

  106. Gardas, R.L., Freire, M.G., Carvalho, P.J., Marrucho, I.M., Fonseca, I.M.A., Ferreira, A.G.M., Coutinho, J.A.P.: PρT measurements of imidazolium-based ionic liquids. J. Chem. Eng. Data 52, 1881–1888 (2007)

    CAS  Google Scholar 

  107. Machida, H., Sato, Y., Smith Jr, R.L.: Pressure–volume–temperature (PVT) measurements of ionic liquids ([bmim +][#], [bmim +][#], [bmim +][#]) and analysis with the Sanchez-Lacombe equation of state. Fluid Phase Equilib. 264, 147–155 (2008)

    CAS  Google Scholar 

  108. Harris, K.R., Woolf, L.A., Kanakubo, M.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J. Chem. Eng. Data 50, 1777–1782 (2005)

    CAS  Google Scholar 

  109. Jacquemin, J., Husson, P., Mayer, V., Cibulka, I.: High-pressure volumetric properties of imidazolium-based ionic liquids: effect of the anion. J. Chem. Eng. Data 52, 2204–2211 (2007)

    CAS  Google Scholar 

  110. Gardas, R.L., Costa, H.F., Freire, M.G., Carvalho, P.J., Marrucho, I.M., Fonseca, I.M.A., Ferreira, A.G.M., Coutinho, J.A.P.: Densities and derived thermodynamic properties of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ionic liquids. J. Chem. Eng. Data 53, 805–811 (2008)

    CAS  Google Scholar 

  111. Esperanca, J.M.S.S., Guedes, H.J.R., Blesic, M., Rebelo, L.P.N.: Densities and derived thermodynamic properties of ionic liquids. 3. Phosphonium-based ionic liquids over an extended pressure range. J. Chem. Eng. Data 51, 237–242 (2006)

    CAS  Google Scholar 

  112. Esperanca, J.M.S.S., Guedes, H.J.R., Lopes, J.N.C., Rebelo, L.P.N.: Pressure–density–temperature (p-ρ-T) surface of [C6mim][NTf2]. J. Chem. Eng. Data 53, 867–870 (2008)

    CAS  Google Scholar 

  113. Gardas, R.L., Freire, M.G., Carvalho, P.J., Marrucho, I.M., Fonseca, I.M.A., Ferreira, A.G.M., Coutinho, J.A.P.: High-pressure densities and derived thermodynamic properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 52, 80–88 (2007)

    CAS  Google Scholar 

  114. Tekin, A., Safarov, J., Shahverdiyev, A., Hassel, E.: (p, ρ, T) Properties of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate at T = (298.15 to 398.15) K and pressures up to p = 40 MPa. J. Mol. Liq. 136, 177–182 (2007)

    CAS  Google Scholar 

  115. Tomida, D., Kumagai, A., Qiao, K., Yokoyama, C.: Viscosity of [bmim][PF6] and [bmim][BF4] at high pressure. Int. J. Thermophys. 27, 39–47 (2006)

    CAS  Google Scholar 

  116. de Gomes Azevedo, R., Esperanca, J.M.S.S., Najdanovic-Visak, V.X., Visak, V., Guedes, H.J.R., Guedes, H.J.R., Nunes da Ponte, M., Rebelo, L.P.N.: Thermophysical and thermodynamic properties of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate over an extended pressure range. J. Chem. Eng. Data 50, 997–1008 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Abildskov.

Appendix: Model Equations

Appendix: Model Equations

The form for the DCFI model is based on hard-sphere properties with a linear density perturbation assuming that the DCFI can be expressed as functions of (reduced) temperature, density and composition as follows:

$$ C_{ij} (\tilde{T},\tilde{\rho }) = C_{ij}^{hs} (\tilde{\varvec{\rho }}) - 2\rho \left[ {b_{ij} (\tilde{T}) - b_{ij}^{hs} (\tilde{T})} \right]. $$
(15)

Superscript ‘hs’ means from a hard-sphere equation such as the Percus/Yevick, ‘Hypernetted Chain’, or Carnahan/Starling forms [39]. The ~ denotes a reduced temperature,\({\tilde{T}}\)= TT *, and a set of reduced densities, \({\tilde{\rho}}_{i}\), (defined below). The quantities b are a matrix of values that for simple substances resemble second virial coefficients. We use the hard spheres expressions given by Reed and Gubbins [39], and generalized equations for b empirically determined from pure component data [16]. The pressure can be found analytically by integrating Eq. 4 with Eq. 15. This gives the density variation with pressure and activity coefficient,

$$ \frac{{p - p^{\text{ref}} }}{RT} = \left( {\frac{{p^{\text{hs}} }}{RT}} \right) - \left( {\frac{{P^{\text{hs}} }}{RT}} \right) + \sum\limits_{i = 1}^{C} {\sum\limits_{j = 1}^{C} {\left( {x_{j} x_{i} \rho^{2} - x_{i}^{\text{ref}} x_{j}^{\text{ref}} \rho^{{{\text{ref}}2}} } \right)\left( {b_{ij} - b_{ij}^{\text{hs}} } \right)}}. $$
(16)

The full standard state specification includes pressure, p ref, and solvent density, ρ ref, at T. Typically an experimental measurement at low pressure is used, but the density could also be estimated by a predictive model. Details are given in [17]. Applications to supercritical solutes in aqueous/organic mixtures are summarized in [18]. Applications to supercritical solutes in ionic liquids are described in [9] and ionic liquid phase behavior in [10, 11].

Various quantities given in the above equations must be modeled. The matrices b, b hs, and other ‘hard sphere’ quantities use characteristic quantities T * and V * for each mixture component, as well as binary parameters k ij , characterizing component pairs. Characteristics T * and V * values for many gaseous and nonionic liquid substances are available from Campanella [18]. Values for the ionic liquids have previously been found by regression of density data [911]. Here we have predicted these using a group contribution method based on the van der Waals volumes for V * as shown in Eq. 5. For ionic liquids the characteristic temperature was kept fixed at T * = 755 K. The elements of b hs are expressed as,

$$ b_{ij}^{hs} = \frac{{b_{ii}^{hs} + b_{jj}^{hs} }}{2},\,\quad b_{ii}^{hs} = V_{i}^{ * } \widetilde{b}_{ii}^{hs},\quad \widetilde{b}_{ii}^{hs} = \left\{ {\begin{array}{ll} {\frac{{\alpha_{1} }}{{\tilde{T}_{ii}^{{\alpha_{\text{2}} }} }}} & {\tilde{T}_{ii} = \frac{T}{{T_{i}^{*} }} > 0.73} \\ {\beta_{\text{1}} e^{{\beta_{\text{2}} \tilde{T}_{ii} }} } & {\tilde{T}_{ii} = \frac{T}{{T_{i}^{*} }} < 0.73} \\ \end{array} } \right., $$
(17)

where α and β are

$$ \varvec{\alpha}\text{ = }\left( {\begin{array}{*{20}c} {\text{0}\text{.65386227}} \\ {\text{0}\text{.16067976}} \\ \end{array} } \right), \quad\varvec{\beta}\text{ = }\left( {\begin{array}{*{20}c} {\text{0}\text{.807662393}} \\ { - \text{0}\text{.22010926}} \\ \end{array} } \right). $$
(18)

The quantities in b are expressed as

$$ b_{ij} = \tilde{b}_{ij} V_{ij}^{*} $$
(19)
$$\begin{aligned} \tilde{b}_{ij} = c_{\text{1}} \text{ + }\frac{{c_{\text{2}} }}{{\tilde{T}_{ij}^{{}} }}\text{ + }\frac{{c_{\text{3}} }}{{\tilde{T}_{ij}^{2} }}\text{ + }\frac{{c_{\text{4}} }}{{\tilde{T}_{ij}^{3} }}\text{ + }\frac{{c_{\text{5}} }}{{\tilde{T}_{ij}^{8} }} \\ c^{\text{T}} \text{ = }\left[ {\begin{array}{*{20}c} {\text{0}\text{.3625065}} & { - \text{ 0}\text{.7140666}} & { - \text{1}\text{.7543882}} & {\text{0}\text{.47075}} & { - \text{0}\text{.0041793}} \\ \end{array} } \right], \\ \end{aligned} $$
(20)

with \( V_{ij}^{*} \) and \({\tilde{T}_{ij}}\) from

$$ V_{ij}^{*} \text{ = }\frac{{\left( {\sqrt[\text{3}]{{V_{i}^{*} }}\text{ + }\sqrt[\text{3}]{{V_{j}^{*} }}} \right)^{\text{3}} }}{\text{8}} $$
(21)
$$ \tilde{T}_{ij} \text{ = }\frac{T}{{\left( {\text{1} - k_{ij} } \right)\sqrt {T_{i}^{*} T_{j}^{*}}}}. $$
(22)

The hard-sphere terms are

$$ \begin{gathered} \left( {\frac{{p^{hs} }}{RT}} \right) = \frac{6}{\pi }\left( {\frac{{\xi_{0}^{{}} }}{{1 - \xi_{3}^{{}} }} + \frac{{3\xi_{1} \xi_{2} }}{{\left( {1 - \xi_{3} } \right)^{2} }} + \frac{{\xi_{2}^{3} \left( {3 - \xi_{3} } \right)}}{{\left( {1 - \xi_{3} } \right)^{3} }}} \right) \hfill \\ \left( {\frac{{p^{hs} }}{RT}} \right)^{ref} = \frac{6}{\pi }\left( {\frac{{\xi_{0}^{ref} }}{{1 - \xi_{3}^{ref} }} + \frac{{3\xi_{1}^{ref} \xi_{2}^{ref} }}{{\left( {1 - \xi_{3}^{ref} } \right)^{2} }} + \frac{{\xi_{2}^{ref3} \left( {3 - \xi_{3}^{ref} } \right)}}{{\left( {1 - \xi_{3}^{ref} } \right)^{3} }}} \right). \hfill \\ \end{gathered} $$
(23)

These involve the hard-sphere quantities

$$ \begin{gathered} \xi_{q} = \frac{\pi }{6}\sum\limits_{j = 1}^{C} {\rho_{j} \sigma_{j}^{q} } = \frac{\pi }{6}\rho \sum\limits_{j = 1}^{C} {x_{j} \sigma_{j}^{q} };\quad \quad q = 0,1,2,3 \hfill \\ \xi_{q}^{ref} = \frac{\pi }{6}\sum\limits_{j = 1}^{C} {\rho_{j}^{ref} \sigma_{j}^{q} } = \frac{\pi }{6}\rho^{ref} \sum\limits_{j = 1}^{C} {x_{j}^{ref} \sigma_{j}^{q} };\quad \quad q = 0,1,2,3, \hfill \\ \end{gathered} $$
(24)

where

$$ \sigma_{i} = \sqrt[3]{{\frac{3}{2\pi }b_{ii}^{hs}}}. $$
(25)

In previous applications to binary systems (gases in ionic liquids), the standard state pressure was p ref = 0 bar (due to the non-volatile nature of the solvent) and the reference density was the density of the solvent at the given temperature extrapolated to 0 bar, i.e. ρ ref = ρ (T, p = 0 bar). In practice, density data given at 1 bar can also be used, with negligible difference from zero pressure. The binary parameter, k ij , appearing in Eq. 22 is determined from binary data. For pairs involving a supercritical gas and a condensable component, the value is best determined from phase equilibrium data. For any supercritical species, there is a constraint relating its Henry’s law constants in liquids with different compositions that can be used to find the k ij value in one solvent from that in another [18]. We have developed this form for ionic liquids [9] (both mixed and pure).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abildskov, J., O’Connell, J.P. Densities of Pure Ionic Liquids and Mixtures: Modeling and Data Analysis. J Solution Chem 44, 558–592 (2015). https://doi.org/10.1007/s10953-015-0297-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0297-1

Keywords

Navigation