Skip to main content
Log in

Catalytic Activity of Ruthenium(III) and Thermodynamic Study of Oxidative Degradation of Chloramphenicol by Cerium(IV) in Sulfuric Acid Medium

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The micro amounts of ruthenium(III) catalyzed oxidation of chloramphenicol by cerium(IV) in an aqueous sulphuric acid medium has been studied spectrophotometrically at 25 °C and at I = 1.60 mol·dm−3. The order with respect to [Ce(IV)] and [Ru(III)] was found to be unity. Increasing [H+] accelerates the rate with less than unit order in [H+]. The reaction rate decreases with increasing ionic strength and increases with decreasing dielectric constant of the medium. The experimental results suggest that the active species of cerium(IV) and ruthenium(III) were CeSO4 2+ and [Ru(H2O)6]3+, respectively. Based on the experimental results a suitable mechanism was proposed and the rate law was derived. The activation parameters were calculated with respect to the slow step of the proposed mechanism and thermodynamic quantities were also determined. The reaction constants involved in the mechanism have been computed. There is a good agreement between the experimental and calculated rate constants under different experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Ehrlich, J., Gottlieb, D., Burkholder, P.R., Lucia, E.A., Pridham, T.G.: Streptomyces venezuelae, N. Sp., the source of chloromycetin. J. Bacteriol. 56, 467–477 (1948)

    Google Scholar 

  2. Long, L.M., Troutman, H.D.: Chloramphenicol (chloromycetin). VII. Synthesis through p-nitroacetophenone. J. Am. Chem. Soc. 71, 2473–2475 (1949)

    Article  CAS  Google Scholar 

  3. Burger, A.: Medicinal. Wiley, New York (1970)

    Google Scholar 

  4. Gottlieb, D., Carter, H.E., Robbins, P.W., Burg, R.W.: Biosynthesis of chloramphenicol [IV]—Incorporation of carbon14-labeled precursors. J. Bacteriol. 84, 888–895 (1962)

    CAS  Google Scholar 

  5. Bolattin, M., Vernekar, R., Kiragi, A., Bydagi, K., Nandibewoor, S., Chimatadar, S.: Iodide ion mediated oxidation of chloramphenicol by hexacyanoferrate(III) ion in aqueous alkaline medium. Reac. Kinet. Mech. Cat. 110, 317–330 (2013)

    Article  CAS  Google Scholar 

  6. Hosahalli, R.V., Byadagi, K.S., Nandibewoor, S.T., Chimatadar, S.A.: Kinetics and mechanism of ruthenium(III) catalyzed oxidation of chloromphenicol—An antibiotic drug by diperiodatocuprate(III) in aqueous alkaline medium. Kinet. Catal. 53, 65–74 (2012)

    Article  CAS  Google Scholar 

  7. Munavalli, D.S., Thabaj, K.A., Chimatadar, S.A., Nandibewoor, S.T.: Bromide mediated oxidation of antimony(III) by cerium(IV) in aqueous sulfuric acid medium. Ind. J. Chem. 46, 1579–1584 (2007)

    Google Scholar 

  8. Day, M.C., Selbin, J.: Theoretical Inorganic Chemistry. Reinhold Publishing Corp, New York (1964)

    Google Scholar 

  9. Yatsimiraskii, K.B., Luzan, A.A.: Mechanism and kinetics for the cerium oxalate reaction. Zh. Neorg. Khim. 10, 2268–2272 (1965)

    Google Scholar 

  10. Desai, S.M., Halligudi, N.N., Nandibewoor, S.T.: Kinetics and mechanism of ruthenium(III)-catalysed oxidation of allyl alcohol by acid bromate-autocatalysis in catalysis. Transit. Metal Chem. 27, 207–212 (2002)

    Article  CAS  Google Scholar 

  11. Hiremath, G.A., Timmanagoudar, P.L., Nandibewoor, S.T.: Ruthenium(III) catalyzed oxidation of hexacyanoferrate(II) by periodate in aqueous alkaline medium. Reac. Kinet. Catal. Lett. 63, 403–408 (1998)

    Article  CAS  Google Scholar 

  12. Jeffery, G.H., Bassett, J., Mendham, J., Denney, R.C.: Vogel’s Textbook of Quantitative Chemical Analysis, Sixth Ed., ELBS, Longman, Essex, England, p. 426 (2002)

  13. Maria, P., Mihaela, M., Ganescu, I., Olimpia, R.: Spectrophotometric determination of ruthenium(III) using rhodanine. Ind. J. Chem. 40, 1019–1020 (2001)

    Google Scholar 

  14. Fiegel, F.: Spot Tests in Organic Analysis. Elsevier, New York (1975)

    Google Scholar 

  15. Fiegel, F.: Spot Tests in Organic Analysis, 5th edn. Elsevier, Amsterdam (1956)

    Google Scholar 

  16. Kulba, FYa., Yakovlev, YuB, Mironov, V.E.: Potentiometric study of sulphato complexes of thallium. Russ. J. Inorg. Chem. 10, 1113–1123 (1965)

    Google Scholar 

  17. Kharzeeva, S.E., Serebrennikov, V.V.: Study of sulphato complexes of cerium(IV) by infrared absorption spectra. Russ. J. Inorg. Chem. 12, 1601–1605 (1967)

    Google Scholar 

  18. Cotton, F.A., Wilkinson, G.: Advanced Inorganic Chemistry, 5th edn, p. 885. Wiley, New York (1988)

    Google Scholar 

  19. Cady, H.H., Connick, R.E.: The determination of the formulas of aqueous ruthenium(III) species by means of ion-exchange resin: Ru+3, RuCl+2 and RuCl2 +. J. Am. Chem. Soc. 80, 2646–2652 (1958)

    Article  CAS  Google Scholar 

  20. Jagdeesh, R.V.: Puttaswamy.: Ru(III), Os(VIII), Pd(II) and Pt(IV) catalyzed oxidation of glycil-glycine by sodium N-chloro-p-toluene sulfonamide. J. Phys. Org. Chem. 21, 844–848 (2008)

    Article  Google Scholar 

  21. Moelwyn-Hughes, E.A.: Kinetics of Reaction in Solutions. Oxford University Press, London (1947)

    Google Scholar 

  22. Daugherty, N.A., Taylor, R.L.: The kinetics of the cerium(IV) reaction in perchloric acid. J. Inorg. Nucl. Chem. 4, 1756–1758 (1972)

    Article  Google Scholar 

  23. Moore, W., Anderson, R.C.: Kinetics of the reaction of cerium(IV) and arsenic(III) ions. J. Am. Chem. Soc. 66, 1476–1479 (1944)

    Article  CAS  Google Scholar 

  24. Sumathi, T., Sundaram, P.S., Chandramohan, G.: A kinetic and mechanistic study on the silver(I)-catalyzed oxidation of l-alanine by cerium(IV) in sulfuric acid medium. Arab. J. Chem. 4, 427–435 (2011)

    Article  CAS  Google Scholar 

  25. Hassan, M., Al Ahmadi, M.D., Musaid, M.: Micellar effect on the kinetics of oxidation of methyl blue by cerium(IV) in sulfuric acid medium. Arab. J. Chem. 8, 72–77 (2011)

  26. Patil, R.K., Chimatadar, S.A., Nandibewoor, S.T.: Mechanistic study of cerium(IV) oxidation of antimony(III) in aqueous sulphuric acid in the presence of micro amounts of manganese(II) by stopped flow technique. Transit. Metal Chem. 33, 625–628 (2008)

    Article  CAS  Google Scholar 

  27. Chimatadar, S.A., Madawale, S.V., Nandibewoor, S.T.: Mechanistic study of iodide catalysed oxidation of l-glutamic acid by cerium(IV) in aqueous sulphuric acid medium. Transit. Metal Chem. 32, 634–641 (2007)

    Article  CAS  Google Scholar 

  28. Savanur, A.P., Hosahalli, R.V., Nandibewoor, S.T., Chimatadar, S.A.: Ruthenium(III) mediated oxidation of glycerol by cerium(IV) in aqueous sulfuric acid medium—a kinetic and mechanistic study. Main Group Chem. 8, 283–298 (2009)

    Article  CAS  Google Scholar 

  29. Moelwyn-Hughes, E.A.: Physical Chemistry. Pergamon press, New York (1961)

    Google Scholar 

  30. Laidler, K.J.: Chemical Kinetics. Pearson Education Pvt. Ltd., New Delhi (2004)

    Google Scholar 

  31. Entelis, S.J., Tiger, R.P.: Reaction Kinetics in the Liquid. Wiley, New York (1976)

    Google Scholar 

  32. Nandibewoor, S.T., Morab, V.A.: Chromium(III) catalyzed oxidation of antimony(III) by alkaline hexacyanoferrate(III) and analysis of chromium(III) in micro amounts by kinetic method. J. Chem. Soc. Dalton Trans. 3, 483–488 (1995)

    Article  Google Scholar 

  33. Rangappa, K.S., Raghavendra, M.P., Mahadevappa, D.S., Channegouda, D.: Sodium N-chlorobenzenesulfonamide as a selective oxidant for hexosamines in alkaline medium: a kinetic and mechanistic study. J. Org. Chem. 63, 531–536 (1998)

    Article  CAS  Google Scholar 

  34. Bilehal, D.C., Kulkarni, R.M., Nandibewoor, S.T.: Kinetics and mechanistic study of the ruthenium(III) catalyzed oxidative deamination and decarboxylation of L-valine by alkaline permanganate. Can. J. Chem. 79, 1926–1933 (2001)

    Article  CAS  Google Scholar 

  35. Farokhi, S.A., Nandibewoor, S.T.: The kinetics and the mechanism of oxidative decarboxylation of benzilic acid by acidic permanganate (stopped-flow technique)—an autocatalytic study. Can. J. Chem. 82, 1372–1380 (2011)

    Article  Google Scholar 

  36. Hassan, R.M., Abdel-Kader, D.A., Ahmed, S.M., Fawzy, A., Zaafarany, I.A., Asghar, B.H., Takagi, H.D.: Acid-catalyzed oxidation of carboxymethyl cellulose. Kinetics and mechanism of permanganate oxidation of carboxymethyl cellulose in acid perchlorate solutions. Catal. Commun. 11, 184–190 (2009)

    Article  CAS  Google Scholar 

  37. Ghosh, M.K., Rajput, S.K.: Kinetics and mechanism of lanthanum(III) catalyzed oxidation of dextrose by cerium(IV) in aqueous acedic medium. Int. J. Res. Phys. Chem. 2, 49–54 (2012)

    Google Scholar 

Download references

Acknowledgments

One of the authors (M. B. Bolattin) gratefully acknowledges the University Grants Commission (UGC), New Delhi for the award of “Research Fellowship in Science for Meritorious Students” (RFSMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivamurti Chimatadar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 284 kb)

Appendix: Derivation of Rate Law

Appendix: Derivation of Rate Law

According to Scheme 2:

$$ {\text{Rate = }}\frac{{ - {\text{d}}\left[ {{\text{Ce}}\left[ {\text{IV}} \right]} \right]}}{\text{dt}}{ = }k\left[ {\text{complex}} \right]\left[ {{\text{Ce}}\left( {\text{IV}} \right) \cdot {\text{H}}^{ + } } \right] $$
(13)

From second step of Scheme 2 we have,

$$ K_{6} = \frac{{\left[ {\text{complex}} \right]}}{{\left[ {\text{CHP}} \right]\left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]}} $$
$$ \left[ {\text{complex}} \right]{ = }K_{6} \left[ {\text{CHP}} \right]\left[ {{\text{Ru}}\left( {\text{III}} \right)} \right] $$
(14)

Therefore,

From the first step of Scheme 2 we have,

$$ K_{5} = \frac{{\left[ {{\text{Ce}}\left( {\text{IV}} \right)} \cdot {\text{H}}^{ + }\right] }}{{\left[ {{\text{Ce}}\left({\text{IV}} \right)} \right][{\text{H}}^{ + } ]}} $$
$$ \left[ {{\text{Ce}}\left( {\text{IV}} \right) \cdot {\text{H}}^{ + } } \right] = K_{5} \left[ {{\text{Ce}}\left( {\text{IV}} \right)} \right]\left[ {{\text{H}}^{ + } } \right] $$
(15)

Substituting Eqs. 14 and 15 in Eq. 13 we get

$$ {\text{Rate }} = \frac{{ - {\text{d}}\left[ {{\text{Ce}}\left[ {\text{IV}} \right]} \right]}}{\text{dt}} = kK_{5} K_{6} \left[ {\text{CHP}} \right]\left[ {{\text{Ce}}\left( {\text{IV}} \right)\left[ {{\text{H}}^{ + } } \right]} \right]\left[ {{\text{Ru}}\left( {\text{III}} \right)} \right] $$
(16)

The total concentration of chloramphenicol, [CHP]t is given by,

$$ \left[ {\text{CHP}} \right]_{\text{t}} = \left[ {\text{CHP}} \right]_{\text{f}} { + }\left[ {\text{complex}} \right] $$
$$ \left[ {\text{CHP}} \right]_{\text{t}} = \left[ {\text{CHP}} \right]_{\text{f}} { + }K_{6} \left[ {\text{CHP}} \right]_{\text{f}} \left[ {{\text{Ru}}\left( {\text{III}} \right)} \right] $$
$$ \left[ {\text{CHP}} \right]_{\text{f}} = \frac{{\left[ {\text{CHP}} \right]_{\text{t}} }}{{\left\{ { 1 { + }K_{6} \left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]} \right\}}} $$
(17)

But in the experiment a very low concentration of ruthenium(III) is used, hence the term K 6[Ru(III)] may be neglected in comparison with unity in Eq. 17. So,

$$ \left[ {\text{CHP}} \right] = \left[ {\text{CHP}} \right]_{\text{f}} $$
(18)

Similarly,

$$ \left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]_{\text{t}} = \left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]_{\text{f}} { + }\left[ {\text{complex}} \right] $$
$$ \left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]_{\text{t}} = \left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]_{\text{f}} { + }K_{6} \left[ {\text{CHP}} \right]\left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]_{\text{f}} $$
$$ \left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]_{\text{f}} { = }\frac{{\left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]_{\text{t}} }}{{\left\{ { 1 { + }K_{6} \left[ {\text{CHP}} \right]} \right\}}} $$
(19)

and,

$$ \begin{gathered} \left[ {{\text{Ce}}\left( {\text{IV}} \right)} \right]_{\text{t}} = \left[ {{\text{Ce}}\left( {\text{IV}} \right)} \right]_{\text{f}} + \left[ {\text{Ce}\left( {\text{IV}} \right)} \cdot {\rm H}^{+}\right] \end{gathered} $$
$$ \left[ {{\text{Ce}}\left( {\text{IV}} \right)} \right]_{\text{t}} = \left[ {{\text{Ce}}\left( {\text{IV}} \right)} \right]_{\text{f}} { + }K_{5} \left[ {{\text{Ce}}\left( {\text{IV}} \right)} \right]_{\text{f}} \left[ {\rm H}^{+} \right] $$
$$ \left[ {{\text{Ce}}\left( {\text{IV}} \right)} \right]_{\text{f}} = \frac{{\left[ {{\text{Ce}}\left( {\text{IV}} \right)} \right]_{\text{t}} }}{{\left\{ { 1 { + }K_{5} \left[ {{\text{H}}^{ + } } \right]} \right\}}} $$
(20)

Substituting from Eqs. 18, 19 and 20 in Eq. 16 and omitting the subscripts we have,

$$ {\text{Rate = }}\frac{{ - {\text{d}}\left[ {{\text{Ce}}\left[ {\text{IV}} \right]} \right]}}{\text{dt}}{ = }\frac{{kK_{5} K_{6} \left[ {\text{CHP}} \right]\left[ {{\text{Ce}}\left( {\text{IV}} \right){\text{H}}^{ + } } \right]\left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]}}{{1 + K_{6} \left[ {\text{CHP}} \right] + K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{5} K_{6} \left[ {\text{CHP}} \right]\left[ {{\text{H}}^{ + } } \right]}} $$
(21)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolattin, M., Meti, M., Nandibewoor, S. et al. Catalytic Activity of Ruthenium(III) and Thermodynamic Study of Oxidative Degradation of Chloramphenicol by Cerium(IV) in Sulfuric Acid Medium. J Solution Chem 44, 152–169 (2015). https://doi.org/10.1007/s10953-015-0292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0292-6

Keywords

Navigation