Skip to main content
Log in

Molecular Dynamics Study of Aqueous NaCl Solutions: Flash Crystallization Caused by Solution Phase Change

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Solutions under sub- or supercritical conditions receive much attention because of their significance in geology and industrial applications. One of the most important properties is their very low salt solubility, which leads to rapid crystallization. The morphology of sodium chloride crystals formed in supercritical fluids has been shown to be affected by the presence of the high-concentration liquid phase and low-concentration vapor phase [Armellini and Tester, J. Supercritical Fluid 4, 254–264 (1991)]. However, because of the short time scales involved, experimental observation of the underlying mechanism is difficult. In the present study, microsecond-scale molecular dynamics, which provide insight with picosecond resolution, were conducted for the NaCl salt–solution interfacial system at sub- and super-critical conditions. We propose the utilization of the correlation between the number density of ions and water to parameterize the solution phase. This correlation and the two-dimensional number densities provide insight into flash crystallization at the atomic scale. Vapor–liquid phase coexistence was found at high pressure and the diffusive high-concentration liquid phase could transport sodium and chloride ions to form a compact solid phase. In contrast, an isolated crystal forms at low pressure owing to the rapid volume expansion of the vapor phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Armellini, F.J., Tester, J.W.: Experimental methods for studying salt nucleation and growth from supercritical water. J. Supercrit. Fluids 4, 254–264 (1991)

    Article  CAS  Google Scholar 

  2. Armellini, F.J., Tester, J.W., Hong, G.T.: Precipitation of sodium chloride and sodium sulfate in water from sub- to supercritical conditions: 150 to 550 \(^{\circ }\)C, 100 to 300 bar. J. Supercrit. Fluids 7, 147–158 (1994)

    Article  CAS  Google Scholar 

  3. Hovland, M., Kuznetsova, T., Rueslatten, H., Kvamme, B., Johnsen, H.K., Fladmark, G.E., Hebach, A.: Sub-surface precipitation of salts in supercritical seawater. Basin Res. 18, 221–230 (2006)

    Article  Google Scholar 

  4. Butterfield, D.A., Mcduff, R.E., Mottl, M.J., Lilley, M.D., Lupton, J.E., Massoth, G.J.: Gradients in the composition of hydrothermal fluids from the Endeavour segment vent field; phase separation and brine loss. J. Geophys. Res. 99, 9561–9583 (1994)

    Article  Google Scholar 

  5. Koschinsky, A., Garbe-Schonberg, D., Sander, S., Schmidt, K., Gennerich, H., Stauss, H.: Hydrothermal venting at pressure–temperature conditions above the critical point of seawater, 5\(^{\circ }\)S on the Mid-Atlantic Ridge. Geology 36, 615–618 (2008)

    Article  CAS  Google Scholar 

  6. Kitazono, S., Ueno, H.: Mineralogical and genetical aspects of the Doyashiki Kuroko Deposits, Hokuroku Basin, Japan. Resour. Geol. 53, 143–153 (2003)

    Article  CAS  Google Scholar 

  7. Massoth, G.J., Butterfield, D.A., Lupton, J.E., McDuff, R.E., Lilley, M.D., Jonasson, I.R.: Submarine venting of phase-separated hydrothermal fluids at Axial Volcano Juan de Fuca Ridge. Nature 340, 702–705 (1989)

    Article  CAS  Google Scholar 

  8. Von Damm, K.L.: Chemistry of hydrothermal vent fluids from 9\(^{\circ }\)-10\(^{\circ }\)N, East Pacific Rise: “Time zero”, the immediate posteruptive period. J. Geophys. Res. 105, 11203–11222 (2000)

    Article  Google Scholar 

  9. Butterfield, D.A., Massoth, G.J., McDuff, R.E., Lupton, J.E., Lilley, M.: Geochemistry of hydrothermal fluids from axial seamount hydrothermal emissions study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid–rock interaction. J. Geophys. Res. 95, 12895–12921 (1990)

    Article  Google Scholar 

  10. Haymon, R.M., Fornari, D.J., Von Damm, K.L., Lilley, M.D., Perfit, M.R., Edmond, J.M., Shanks III, W.C., Lutz, R.A., Grebmeier, J.M., Carbotte, S., Wright, D., McLaughlin, E., Smith, M., Beedle, N., Olson, E.: Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9\(^{\circ }\)45–52’N: Direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth and Planet. Sci. Lett. 119, 85–101 (1993)

    Article  Google Scholar 

  11. Moss, R., Scott, S.D.: Geochemistry and mineralogy of gold-rich hydrothermal precipitates from the Eastern Manus Basin Papua New Guinea. Can. Mineral. 39, 957–978 (2001)

    Article  CAS  Google Scholar 

  12. Hannington, M., Herzig, P., Stoffers, P., Scholten, J., Botz, R., Garbe-Schonberg, D., Jonasson, I.R., Roest, W.: Shipboard scientific party, first observations of high-temperature submarine hydrothermal vents and massive anhydrite deposits off the north coast of Iceland. Mar. Geol. 177, 199–220 (2001)

    Article  CAS  Google Scholar 

  13. Hirschmann, M., Kohlstedt, D.: Water in earth’s mantle. Phys. Today 65, 40–45 (2012)

    Article  CAS  Google Scholar 

  14. Bermejo, M.D., Cocero, M.J.: Supercritical water oxidation: a technical review. AIChE J. 52, 3933–3951 (2006)

    Article  CAS  Google Scholar 

  15. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)

    Article  CAS  Google Scholar 

  16. Berendsen, H.J.C., Grigera, J., Staatsma, T.: The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987)

    Article  CAS  Google Scholar 

  17. Alejandre, J., Tildesley, D., Chapela, G.: Molecular dynamics simulation of the orthobaric densities and surface tension of water. J. Chem. Phys. 102, 4574–4583 (1995)

    Article  CAS  Google Scholar 

  18. Joung, I.S., Cheatham III, T.E.: Determination of alkali and halide monovalent ion parameters for use in explicitly solvated bio molecular simulations. J. Phys. Chem. B 112, 9020–9071 (2008)

    Article  CAS  Google Scholar 

  19. Joung, I.S., Cheatham III, T.E.: Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. J. Phys. Chem. B 113, 13279–13290 (2009)

    Article  CAS  Google Scholar 

  20. Kobayashi, K., Liang, Y., Sakka, T., Matsuoka, T.: Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water. J. Chem. Phys. 140, 144705 (2014)

    Article  Google Scholar 

  21. Bischoff, J.L., Pitzer, K.S.: Liquid–vapor relations for the system NaCl–H\(_2\)O: Summary of the PTx surface from 300\(^{\circ }\) to 500 °C. Am. J. Sci. 289, 217–248 (1989)

    Article  CAS  Google Scholar 

  22. Pitzer, K.S.: Aqueous electrolytes at near-critical and supercritical temperatures. Int. J. Thermophys. 19, 355–365 (1998)

    Article  CAS  Google Scholar 

  23. Drriesner, T., Heinrich, C.A.: The system H\(_2\)O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000 bar and 0 to 1 \(X_{\rm NaCl}\). Geochim. Cosmochim. Acta 71, 4880–4901 (2007)

    Article  Google Scholar 

  24. Walther, J.V.: Essential of Geochemistry, p. 137. Jones and Bartlett Publishers, Massachusetts (2009)

    Google Scholar 

  25. Nose, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984)

    Article  CAS  Google Scholar 

  26. Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981)

    Article  CAS  Google Scholar 

  27. Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Japanese Society for the Promotion of Science (JSPS) through a Grant-in-Aid for Scientific Research A (No. 24246148), JOGMEC, JST/JICA-SATREPS, and JAPEX. We also wish to thank Yasuhiro Fukunaka for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, K., Liang, Y. & Matsuoka, T. Molecular Dynamics Study of Aqueous NaCl Solutions: Flash Crystallization Caused by Solution Phase Change. J Solution Chem 43, 1799–1809 (2014). https://doi.org/10.1007/s10953-014-0247-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0247-3

Keywords

Navigation