Skip to main content
Log in

Origin of Spectrum Shifts of Benzophenone–Water Clusters: DFT Study

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Structures and electronic excitation energies of the benzophenone–water (Bp–H2O) and benzophenone–methanol (Bp–CH3OH) complexes have been investigated by means of density functional theory calculations. The CAM-B3LYP/6-311++G(d,p) and higher level calculations were carried out for the system. The calculations indicate that free Bp has a nonplanar structure with twist angle of 54.2° for two phenyl rings (referred to as ϕ). In the case of the Bp–H2O system, the twist angle of the phenyl rings and structure of the Bp skeleton were hardly changed by hydration (ϕ = 55.1° for Bp–H2O). However, the excitation energies of Bp were drastically changed by this solvation. The time-dependent density functional calculations show that the n–π* transition (S1 state) is blue-shifted by the solvation, whereas two π–π* transitions (S2 and S3) were red-shifted. The origin of the specific spectral shifts is discussed on the basis of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Palma, A., Pasquarello, A., Car, R.: First-principles electronic structure study of Ti–PTCDA contacts. Phys. Rev. B 65, 155314 (2002)

    Article  Google Scholar 

  2. Azuma, Y., Iwasaki, K., Kurihara, T., Okudaira, K.K., Ueno, N.: Low energy electron diffraction of the system In-[perylene-3,4,9,10-tetracarboxylic dianhydride] on MoS2. J. Appl. Phys. 91, 5024–5028 (2002)

    Article  CAS  Google Scholar 

  3. Hirose, Y., Chen, W., Haskal, E.I., Forrest, S.R., Kahn, A.: Band lineup at an organic–inorganic semiconductor heterointerface: perylenetetracarboxylic dianhydride GaAs(100). Appl. Phys. Lett. 64, 3482–3484 (1994)

    Article  CAS  Google Scholar 

  4. Hirose, Y., Kahn, A., Aristiv, V., Soukiassian, P., Bulovic, V., Forrest, S.R.: Chemistry and electronic properties of metal–organic semiconductor interfaces: Al, Ti, In, Sn, Ag, and Au on PTCDA. Phys. Rev. B 54, 13748–13758 (1996)

    Article  CAS  Google Scholar 

  5. Azuma, Y., Akatsuka, S., Okudaira, K.K., Harada, Y., Ueno, N.: Angle-resolved ultraviolet photoelectron spectroscopy of In-[perylene-3,4,9,10-tetracarboxylic dianhydride] system. J. Appl. Phys. 87, 766–769 (2000)

    Article  CAS  Google Scholar 

  6. Kera, S., Setoyama, H., Onoue, M., Okudaira, K.K., Harada, Y., Ueno, N.: Origin of indium-[perylene-3,4,9,10-tetracarboxilic dianhydride] interface states studied by outermost surface spectroscopy using metastable atoms. Phys. Rev. B 63, 115204 (2001)

    Article  Google Scholar 

  7. Feldman, M., Sun, J.: Resolution limits in X-ray-lithography. J. Vac. Sci. Technol. B 10, 3173–3176 (1992)

    Article  CAS  Google Scholar 

  8. Hayase, S.: Polysilanes for semiconductor fabrication. Prog. Polym. Sci. 28, 359–381 (2003)

    Article  CAS  Google Scholar 

  9. Chiang, W.Y., Mei, W.P.: Benzophenone-containing methylthiomethyl pendant polyimides as negative acting photoresist. J. Appl. Polym. Sci. 50, 2191–2195 (1993)

    Article  CAS  Google Scholar 

  10. Reichardt, C. (ed.): Solvent Effects in Organic Chemistry. Verlag Chemie, Weinheim, New York (1978)

    Google Scholar 

  11. Iwata, S., Morokuma, K.: Molecular-orbital studies of hydrogen-bonds. 4. Hydrogen-bonds in excited-states of H2CO with H2O. Phys. Lett. 19, 94–98 (1973)

    CAS  Google Scholar 

  12. Del Bene, J.: Molecular orbital theory of hydrogen-bond. 6. Effect of hydrogen-bonding of n-pi transition in dimers ROHOCH2. J. Am. Chem. Soc. 95, 6517–6522 (1973)

    Article  Google Scholar 

  13. Cimiraglia, R., Miertus, S., Tomasi, J.: On the ab initio evaluation of the solvent shift of electronic absorption-spectra. Chem. Phys. Lett. 80, 286–290 (1981)

    Article  CAS  Google Scholar 

  14. DeBolt, S.E., Kollman, P.A.: A theoretical-examination of solvatochromism and solute solvent structuring in simple alkyl carbonyl-compounds: simulations using statistical mechanical free-energy perturbation-methods. J. Am. Chem. Soc. 112, 7515–7524 (1990)

    Article  CAS  Google Scholar 

  15. Blair, J.T., Krogh-Jespersen, K., Levy, R.M.: Solvent effects on optical-absorption spectra: the 1A1 → 1A2 transition of formaldehyde in water. J. Am. Chem. Soc. 111, 6948–6956 (1989)

    Article  CAS  Google Scholar 

  16. Kawashima, Y., Dupuis, M., Hirao, K.: Monte Carlo microsolvation simulations for excited states using a mixed-Hamiltonian model with polarizable and vibrating waters: applications to the blue-shift of the H2CO (1) (n → π*) excitation. J. Chem. Phys. 117, 248–257 (2002)

    Article  CAS  Google Scholar 

  17. Fukunaga, H., Morokuma, K.: Cluster and solution simulation of formaldehyde water complexes and solvent effect on formaldehyde (n-π*) transition. J. Phys. Chem. 97, 59–69 (1993)

    Article  CAS  Google Scholar 

  18. Ten-no, S., Hirata, F., Kato, S.: Reference interaction site model self-consistent-field study for solvation effect on carbonyl-compounds in aqueous-solution. J. Chem. Phys. 100, 7443–7453 (1994)

    Article  CAS  Google Scholar 

  19. Coutinho, K., Canuto, S.: Solvent effects in emission spectroscopy: a Monte Carlo quantum mechanics study of the n-π* shift of formaldehyde in water. J. Chem. Phys. 113, 9132–9139 (2000)

    Article  CAS  Google Scholar 

  20. Canuto, S., Coutinho, K.: From hydrogen bond to bulk: solvation analysis of the n-π* transition of formaldehyde in water. Int. J. Quantum Chem. 77, 192–198 (2000)

    Article  CAS  Google Scholar 

  21. Mennucci, B., Cammi, R., Tomasi, J.: Excited states and solvatochromic shifts within a nonequilibrium solvation approach: a new formulation of the integral equation formalism method at the self-consistent field, configuration interaction, and multiconfiguration self-consistent field level. J. Chem. Phys. 109, 2798–2807 (1998)

    Article  CAS  Google Scholar 

  22. Naka, N., Morita, A., Kato, S.: Effect of solvent fluctuation on the electronic transitions of formaldehyde in aqueous solution. J. Chem. Phys. 110, 3484–3492 (1999)

    Article  CAS  Google Scholar 

  23. Martin, M.E., Sanchez, M.L., Olivares del Valle, F.J., Aguilar, M.A.: A multiconfiguration self-consistent field/molecular dynamics study of the (n → π*)(1) transition of carbonyl compounds in liquid water. J. Chem. Phys. 113, 6308–6315 (2000)

    Article  CAS  Google Scholar 

  24. Thompson, M.A.: QM/MMpol: a consistent model for solute/solvent polarization. Application to the aqueous solvation and spectroscopy of formaldehyde, acetaldehyde, and acetone. J. Phys. Chem. 100, 14492–14507 (1996)

    Article  CAS  Google Scholar 

  25. Bader, J.M., Cortis, C.M., Berne, B.J.: Solvation and reorganization energies in polarizable molecular and continuum solvents. J. Chem. Phys. 106, 2372–2387 (1997)

    Article  CAS  Google Scholar 

  26. Urahata, S., Canuto, S.: Monte Carlo-quantum mechanics study of the UV–Visible spectrum of benzophenone in water. Int. J. Quant. Chem. 80, 1062–1067 (2000)

    Article  CAS  Google Scholar 

  27. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1 (Ab-initio program). Gaussian, Inc., Wallingford (2009)

  28. Tachikawa, H., Iyama, T.: Electron detachment dynamics of the microsolvated benzophenone radical anion: a full dimensional direct ab initio trajectory approach. Phys. Chem. Chem. Phys. 4, 5806–5812 (2002)

    Article  CAS  Google Scholar 

  29. Tachikawa, H., Iyama, T., Kato, K.: A direct ab initio molecular dynamics (MD) study on the benzophenone–water 1:1 complex. Phys. Chem. Chem. Phys. 11, 6008–6014 (2009)

    Article  CAS  Google Scholar 

  30. Tachikawa, H., Abe, S.: Solvent stripping dynamics of lithium ion solvated by ethylene carbonates: a direct ab initio molecular (AIMD) study. Electrochim. Acta 120, 57–64 (2014)

    Article  CAS  Google Scholar 

  31. Tachikawa, H.: Electron detachment dynamics of O2–(H2O): direct ab initio molecular dynamics (AIMD) approach. RSC Adv. 4, 516–522 (2014)

    Article  CAS  Google Scholar 

  32. Hochstrasser, R.M., Noe, L.J.: Excited state dipole moments of benzophenone in singlet and triplet n-pi states. J. Mol. Spect. 38, 175–180 (1971)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges partial support from a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (JSPS) (Grant Number 24550001). This work was partially supported by a Grant-in-Aid for Scientific Research on Innovation Areas “Evolution of Molecules in Space” (Grant Number 25108004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroto Tachikawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyama, T., Kawabata, H. & Tachikawa, H. Origin of Spectrum Shifts of Benzophenone–Water Clusters: DFT Study. J Solution Chem 43, 1676–1686 (2014). https://doi.org/10.1007/s10953-014-0228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0228-6

Keywords

Navigation