Skip to main content
Log in

Effects of Salts on the Micellization of a Short-Tailed Nonionic Ethoxylated Surfactant: An Intradiffusion Study

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In commercial formulations, surfactants are often co-formulated with inorganic electrolytes, which are included as inexpensive thickeners. Salts affect the surfactant’s aggregative and functional behavior. However, while the electrolyte effect on the self-aggregation of ionic surfactants can be rationalized in terms of electrostatic interactions, in the case of nonionic surfactants the molecular determinants are still unclear. In this work, we investigate the effects of alkali and alkaline–earth metal chlorides on the micellization of the nonionic surfactant hexyl penta(oxyethylene) ether, C6E5, in aqueous solution. To this aim, the C6E5 intradiffusion (also named self-diffusion) coefficient in aqueous mixtures of various alkali and alkaline–earth metal chlorides was measured by pulsed gradient spin-echo NMR. The results show that all the considered electrolytes cause a decrease of the surfactant critical micellar concentration, cmc, while the micellar size is almost unaffected. The experimental evidence can be interpreted in terms of de-hydration of the apolar alkyl tails with a minor contribution arising from the dehydration of the poly(ethylene oxide) headgroups. The order of effectiveness of the different cations follows the Hofmeister series, some aspects of which are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vitagliano, V., D’Errico, G., Ortona, O., Paduano, L.: Physico-chemical properties of ethoxylated surfactants in aqueous solutions. In: Hubbard, A.T. (ed.) Encyclopedia of Surface and Colloid Science, pp. 4105–4123. Marcel Dekker, New York (2002)

    Google Scholar 

  2. Reeve, P., Tepe, T., Shulman, J.: Rheology modifiers and thickners for liquid detergents. In: Lai, K.Y. (ed.) Liquid detergents, vol. 129, pp. 113–140. Marcel Dekker, New York (2006)

    Google Scholar 

  3. Hofmeister, F.: Zur Lehre von der Wirkung der Salze. Arch. Exp. Pathol. Pharmakol. 24, 247–260 (1887)

    Article  Google Scholar 

  4. Kunz, W., Henle, J., Ninham, B.W.: ‘Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr. Opin. Colloid Interface Sci. 9, 19–37 (2004)

    Article  CAS  Google Scholar 

  5. Zang, Y., Cremer, P.S.: Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 10, 658–663 (2006)

    Article  Google Scholar 

  6. Collins, K.D., Washabaugh, M.W.: The Hofmeister effect and the behaviour of water at interfaces. Q. Rev. Biophys. 18, 323–422 (1985)

    Article  CAS  Google Scholar 

  7. Cacace, M.G., Landau, E.M., Ramsden, J.J.: The Hofmeister series: salt and solvent effects on interfacial phenomena. Q. Rev. Biophys. 30, 241–277 (1997)

    Article  CAS  Google Scholar 

  8. Broering, J.M., Bommarius, A.S.: Evaluation of Hofmeister effects on the kinetic stability of proteins. J. Phys. Chem. B 109, 20612–20619 (2005)

    Article  CAS  Google Scholar 

  9. Baldwin, R.L.: How Hofmeister ion interactions affect protein stability. Biophys. J. 71, 2056–2063 (1996)

    Article  CAS  Google Scholar 

  10. Koelsch, P., Motschmann, H.: An experimental route to Hofmeister. Curr. Opin. Colloid Interface Sci. 9, 87–91 (2004)

    Article  CAS  Google Scholar 

  11. Chaplin, M.F.: A proposal for the structuring of water. Biophys. Chem. 83, 211–221 (2000)

    Article  CAS  Google Scholar 

  12. Melander, W., Horvath, C.: Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch. Biochem. Biophys. 183, 200–215 (1977)

    Article  CAS  Google Scholar 

  13. Clarke, R.J., Lüpfert, C.: Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect. Biophys. J. 76, 2614–2624 (1999)

    Article  CAS  Google Scholar 

  14. Parsegian, V.A.: Protein–water interactions. Int. Rev. Cytol. 215, 1–31 (2002)

    Article  CAS  Google Scholar 

  15. Kuhn, L.A., Siani, M.A., Pique, M.E., Fisher, C.L., Getzoff, E.D., Tainer, J.A.: The interdependence of protein surface topography and bound water molecules revealed by surface accessibility and fractal density measures. J. Mol. Biol. 228, 13–22 (1992)

    Article  CAS  Google Scholar 

  16. Thanki, N., Thornton, J.M., Goodfellow, J.M.: Distributions of water around amino acid residues in proteins. J. Mol. Biol. 202, 637–657 (1988)

    Article  CAS  Google Scholar 

  17. Chandler, D.: Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005)

    Article  CAS  Google Scholar 

  18. Ninham, B.W., Yaminsky, V.: Ion binding and ion specificity: the Hofmeister effect and Onsager and Lifshitz theories. Langmuir 13, 2097–2108 (1997)

    Article  CAS  Google Scholar 

  19. Boström, M., Williams, D.R.M., Stewart, P.R., Ninham, B.W.: Hofmeister effects in membrane biology: the role of ionic dispersion potentials. Phys. Rev. E 68, 041902-1–041902-6 (2003)

    Google Scholar 

  20. Boström, M., Ninham, B.W.: Contributions from dispersion and Born self-free energies to the solvation energies of salt solutions. J. Phys. Chem. B 108, 12593–12595 (2004)

    Article  Google Scholar 

  21. Boström, M., Williams, D.R.M., Ninham, B.W.: Surface tension of electrolytes: specific ions effects explained by dispersion forces. Langmuir 17, 4475–4478 (2001)

    Article  Google Scholar 

  22. Collins, K.D.: Charge density-dependent strength of hydration and biological structure. Biophys. J. 72, 65–76 (1997)

    Article  CAS  Google Scholar 

  23. Karlström, G., Hagberg, D.: Toward an understanding of the Hofmeister effect: a computer game with dipoles and an ion. J. Phys. Chem. B 106, 11585–11592 (2002)

    Article  Google Scholar 

  24. Hagberg, D., Brdarski, S., Karlström, G.: On the solvation of ions in small water droplets. J. Phys. Chem. B 109, 4111–4117 (2005)

    Article  CAS  Google Scholar 

  25. Hribar, B., Southall, N.T., Vlachy, V., Dill, K.A.: How ions affect the structure of water. J. Am. Chem. Soc. 124, 12302–12311 (2002)

    Article  CAS  Google Scholar 

  26. Annunziata, O., Paduano, L., Pearlstein, A.J., Miller, D.G., Albright, J.G.: The effect of salt on protein chemical potential determined by ternary diffusion in aqueous solutions. J. Phys. Chem. B 110, 1405–1415 (2006)

    Article  CAS  Google Scholar 

  27. Carale, T.R., Pham, Q.T., Blankschtein, D.: Salt effects on intramicellar interactions and micellization of non ionic surfactants in aqueous solutions. Langmuir 10, 109–121 (1994)

    Article  CAS  Google Scholar 

  28. Umlong, I.M., Ismail, K.: Micellization behaviour of sodium dodecyl sulfate in different electrolyte media. Colloids Surf. A 299, 8–14 (2007)

    Article  CAS  Google Scholar 

  29. Šarac, B., Bešter-Rogač, M.: Temperature and salt-induced micellization of dodecyltrimethylammonium chloride in aqueous solution: a thermodynamic study. J. Colloid Interface Sci. 338, 216–221 (2009)

    Article  Google Scholar 

  30. Ambrosone, L., Costantino, L., D’Errico, G., Vitagliano, V.: Density and viscosity studies of poly(ethylene-oxide) alkyl alcohols. J. Solution Chem. 25, 757–772 (1996)

    Article  CAS  Google Scholar 

  31. Ambrosone, L., Costantino, L., D’Errico, G., Vitagliano, V.: A self-diffusion study of poly(ethylene-oxide) alkyl alcohols. J. Solution Chem. 26, 735–748 (1997)

    Article  CAS  Google Scholar 

  32. Ambrosone, L., Costantino, L., D’Errico, G., Vitagliano, V.: Thermodynamic and dynamic properties of micellar aggregates of nonionic surfactants with short hydrophobic tails. J. Colloid Interface Sci. 190, 286–293 (1997)

    Article  CAS  Google Scholar 

  33. Costantino, L., D’Errico, G., Roscigno, P., Vitagliano, V.: Effect of urea and alkylureas on micelle formation by a nonionic surfactant with short hydrophobic tail at 25 °C. J. Phys. Chem. B 104, 7326–7333 (2000)

    Article  CAS  Google Scholar 

  34. Ciccarelli, D., Costantino, L., D’Errico, G., Paduano, L., Vitagliano, V.: Mixed micellar aggregates of anionic and nonionic surfactants with short hydrophobic tails. A PGSE–NMR study. Langmuir 14, 7130–7139 (1998)

    Article  CAS  Google Scholar 

  35. D’Errico, G., Ciccarelli, D., Ortona, O., Vitagliano, V.: Mixed micellar aggregates of nonionic surfactants with short hydrophobic tails. J. Mol. Liq. 100, 241–253 (2002)

    Article  Google Scholar 

  36. Ortona, O., D’Errico, G., Vitagliano, V., Costantino, L.: Mixed micellar aggregates of nonionic and anionic surfactants with short hydrophobic tails: a microcalorimetric study. J. Colloid Interface Sci. 249, 481–488 (2002)

    Article  CAS  Google Scholar 

  37. D’Errico, G.: On the segregative tendency of ethoxylated surfactants in nonionic mixed micelles. Langmuir 27, 3317–3323 (2011)

    Article  Google Scholar 

  38. Ambrosone, L., D’Errico, G., Sartorio, R., Costantino, L.: Dynamic properties of aqueous solutions of ethylene glycol oligomers as measured by the pulsed gradient spin-echo NMR technique at 25 C. J. Chem. Soc. Faraday Trans. I 93, 3961–3966 (1997)

    Article  CAS  Google Scholar 

  39. Paduano, L., Sartorio, R., D’Errico, G., Vitagliano, V.: Mutual diffusion in aqueous solutions of ethylene glycol oligomers at 25 °C. J. Chem. Soc. Faraday Trans. I 94, 2571–2576 (1998)

    Article  CAS  Google Scholar 

  40. Vitagliano, V., D’Errico, G., Ortona, O., Paduano, L.: Isothermal diffusion and intradiffusion in surfactant solutions. In: Nalwa, H.S: (ed.) Handbook of Surfaces and Interfaces of Materials, pp. 545–611. Academic Press, San Diego (2001)

  41. Stilbs, P.: Fourier transform pulsed-gradient spin-echo studies of molecular diffusion. Prog. Nucl. Magn. Reson. Spectrosc. 19, 1–45 (1987)

    Article  CAS  Google Scholar 

  42. Annunziata, O., Costantino, L., D’Errico, G., Paduano, L., Vitagliano, V.: Transport properties for aqueous sodium sulfonate surfactants: 2. Intradiffusion measurements: influence of the obstruction effect on the monomer and micelle mobilities. J. Colloid Interface Sci. 216, 16–24 (1999)

    Article  CAS  Google Scholar 

  43. Mills, R.: Self-diffusion in normal and heavy water in the range 1–45. J. Phys. Chem. 77, 685–688 (1973)

    Article  CAS  Google Scholar 

  44. Lungu, R.P., Sartorio, R., Buzatu, F.D.: New method for theoretical spinodals corresponding to ternary solutions with an amphiphile component. J. Solution Chem. 40, 1687–1700 (2011)

    Google Scholar 

  45. Weinheimer, R.M., Evans, D.F., Cussler, E.L.: Diffusion in surfactant solutions. J. Colloid Interface Sci. 80, 357–363 (1981)

    Article  CAS  Google Scholar 

  46. Ray, A., Némethy, G.: Effects of ionic protein denaturants on micelle formation by non-ionic detergents. J. Am. Chem. Soc. 93, 6787–6793 (1971)

    Article  CAS  Google Scholar 

  47. Zhang, L., Somasundaran, P., Maltesh, C.: Electrolyte effects on the surface tension and micellization of n-dodecyl β-d-maltoside solutions. Langmuir 190, 286–293 (1997)

    Google Scholar 

  48. Mukerjee, P.: Salt effect on non-ionic association colloid. J. Phys. Chem. 69, 4038–4041 (1965)

    Article  CAS  Google Scholar 

  49. Schick, M.J., Atlas, M., Eirich, F.R.: Micellar structure of non-ionic detergents. J. Phys. Chem. 66, 1326–1333 (1962)

    Article  CAS  Google Scholar 

  50. Capuano, F., Paduano, L., D’Errico, G., Mangiapia, G., Sartorio, R.: Diffusion in ternary aqueous systems containing human serum albumin and precipitants of different classes. Phys. Chem. Chem. Phys. 13, 3319–3327 (2011)

    Article  CAS  Google Scholar 

  51. Mao, S., Duan, Z.: The viscosity of aqueous alkali-chloride solutions up to 623 K, 1,000 bar, and high ionic strength. Int. J. Thermophys. 30, 1510–1523 (2009)

    Article  CAS  Google Scholar 

  52. Hefter, G., May, P.M., Sipos, P., Stanley, A.: Viscosities of concentrated electrolyte solutions. J. Mol. Liq. 103, 261–273 (2003)

    Article  Google Scholar 

  53. Phang, S., Stokes, R.H.: Density, viscosity, conductance, and transference number of concentrated aqueous magnesium chloride at 25 °C. J. Solution Chem. 9, 497–505 (1980)

    CAS  Google Scholar 

  54. Zhang, H.L., Chen, G.H., Han, S.J.: Viscosity and density of H2O + NaCl + CaCl2 and H2O + KCl + CaCl2 at 298.15 K. J. Chem. Eng. Data 42, 526–530 (1997)

    Article  CAS  Google Scholar 

  55. Bearman, R.J., Kirkwood, J.G.: Statistical mechanics of transport processes. XI. Equations of transport in multicomponent systems. J. Chem. Phys. 28, 136–145 (1958)

    Article  CAS  Google Scholar 

  56. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Butterworths Scientific Publications, London (1955)

    Google Scholar 

  57. D’Errico, G., Ortona, O., Paduano, L., Tedeschi, A.M., Vitagliano, V.: Mixed micellar aggregates of cationic and nonionic surfactants with short hydrophobic tails. An intradiffusion study. Phys. Chem. Chem. Phys. 4, 5317–5324 (2002)

    Article  Google Scholar 

  58. D’Errico, G., Paduano, L., Khan, A.: Temperature and concentration effects on supramolecular aggregation and phase behavior for poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(propylene oxide) copolymers of different composition in aquoeus mixtures, 1. J. Colloid Interface Sci. 279, 379–390 (2004)

    Article  Google Scholar 

  59. Charlton, I.D., Doherty, A.P.: Voltammetric measurement of intermicellar interaction parameters, correlation with predicted interaction energies. Langmuir 15, 5251–5256 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardino D’Errico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imperatore, R., Vitiello, G., Ciccarelli, D. et al. Effects of Salts on the Micellization of a Short-Tailed Nonionic Ethoxylated Surfactant: An Intradiffusion Study. J Solution Chem 43, 227–239 (2014). https://doi.org/10.1007/s10953-014-0133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0133-z

Keywords

Navigation