Skip to main content
Log in

The Thermodynamics of Long-Tail Surfactant Aggregation Driven by Water Addition in Ethanol

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The thermodynamics of the micellization of long-tail surfactants, including docosyl-, eicosyl-, and octodecyl-trimethylammobium bromide (C22TABr, C20TABr, and C18TABr), docosylethoxyldimethyl-ammonium bromide (C22(OH)DABr), and docosylbenzyldimethyl-ammobium bromide (C22BzDABr), have been studied using static light scattering measurements in ethanol following addition of water. The water content was found to influence the thermodynamics of micellization. In this study, the surfactants examined were at mmol·L−1 concentrations in ethanol and thereby the critical water content inducing aggregation was always smaller than 50 wt%. All the thermodynamic functions are negative over the concentration range investigated. The micellization is mainly enthalpy- and partly entropy-driven. With continuously increasing water content, the entropic contribution to the driving force increases. The critical water contents leading to the transition from mainly enthalpy-driven to mainly entropy-driven behavior are 66.9 wt% (C22BzDABr), 73.2 wt% (C22TABr), and 77.1 wt% (C22(OH)DABr), respectively. Enthalpy–entropy compensation occurs during the micellization processes. The compensation temperatures T c are close to the general values for surfactants in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Evans, D.F., Wennerstrom, H.: The Colloidal Domain. Wiley-VCH, New York (2001)

    Google Scholar 

  2. Tanford, C.: The Hydrophobic Effects: Formation of Micelles and Biological Membranes, 2nd edn. Wiley, New York (1980)

    Google Scholar 

  3. Nagarajan, R., Ruckenstein, E.: Theory of surfactant self-assembly: a predictive molecular thermodynamic approach. Langmuir 7, 2934–2969 (1991)

    Article  CAS  Google Scholar 

  4. Menger, F.M.: In: Shah, D.O. (ed.) Micelles, Microemulsions and Monolayers. Marcel Dekker, New York (1998)

    Google Scholar 

  5. Din, K.U., Koya, P.A.: Micellar properties and related thermodynamic parameters of the 14-6-14, 2Br gemini surfactant in water + organic solvent mixed media. J. Chem. Eng. Data 55, 1921–1929 (2010)

    Article  Google Scholar 

  6. Das, S., Mondal, S., Ghosh, S.: Physicochemical studies on the micellization of cationic, anionic, and nonionic surfactants in water–polar organic solvent mixtures. J. Chem. Eng. Data 58, 2586–2595 (2013)

    Article  CAS  Google Scholar 

  7. Aslanzadeh, S., Yousefi, A.: The effect of ethanol on nanostructures of mixed cationic and anionic surfactants. J. Surfactants Deterg. 17, 709–716 (2014)

    Article  CAS  Google Scholar 

  8. Tiwari, A.K., Sonu, Saha, S.K.: Aggregation properties and thermodynamics of micellization of gemini surfactants with diethyl ether spacer in water and water–organic solvent mixed media. J. Chem. Thermodyn. 70, 24–32 (2014)

    Article  CAS  Google Scholar 

  9. Menget, F.M., Yamasak, Y.: Hyperextended amphiphiles. Bilayer formation from single-tailed compounds. J. Am. Chem. Soc. 115, 3840–3841 (1993)

    Article  Google Scholar 

  10. Yoshimura, T., Chiba, N., Matsuoka, K.: Supra-long chain surfactants with double or triple quaternary ammonium headgroups. J. Colloid Interface Sci. 374, 157–163 (2012)

    Article  CAS  Google Scholar 

  11. Matsuoka, K., Chiba, N., Yoshimura, T.: Aggregation properties of supralong-chain surfactants with double or triple quaternary ammonium head groups. J. Colloid Interface Sci. 379, 72–77 (2012)

    Article  CAS  Google Scholar 

  12. Raghavan, S.R., Kaler, E.W.: Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 17, 300–306 (2001)

    Article  CAS  Google Scholar 

  13. Kumar, R., Kalur, G.C., Ziserman, L., Danino, D., Raghavan, S.R.: Wormlike micelles of a C22-tailed zwitterionic betaine surfactant: from viscoelastic solutions to elastic gels. Langmuir 23, 12849–12856 (2007)

    Article  CAS  Google Scholar 

  14. Croce, V., Cosgrove, T., Maitland, G., Hughes, T., Karlsson, G.: Rheology, cryogenic transmission electron spectroscopy, and small-angle neutron scattering of highly viscoelastic wormlike micellar solutions. Langmuir 19, 8536–8541 (2003)

    Article  CAS  Google Scholar 

  15. Chu, Z., Feng, Y., Su, X., Han, Y.: Wormlike micelles and solution properties of a C22-tailed amidosulfobetaine surfactant. Langmuir 26, 7783–7791 (2010)

    Article  CAS  Google Scholar 

  16. Han, Y., Feng, Y., Sun, H., Li, Z., Han, Y., Wang, H.: Wormlike micelles formed by sodium erucate in the presence of a tetraalkylammonium hydrotrope. J. Phys. Chem. B 115, 6893–6902 (2011)

    Article  CAS  Google Scholar 

  17. Yao, R., Qian, J., Li, H., Yasin, A., Xie, Y., Yang, H.: Synthesis and high-performance of a new sarcosinate anionic surfactant with a long unsaturated tail. RSC Adv. 4, 2865–2872 (2014)

    Article  CAS  Google Scholar 

  18. Mai, Y., Eisenberg, A.: Self-assembly of block copolymers. Chem. Soc. Rev. 41, 5969–5985 (2012) and references therein

    Article  CAS  Google Scholar 

  19. Zhang, L., Eisenberg, A.: Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polym. Adv. Technol. 9, 677–699 (1998) and references therein

    Article  CAS  Google Scholar 

  20. Zhang, L., Eisenberg, A.: Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly (acrylic acid) diblock copolymers in aqueous solutions. J. Am. Chem. Soc. 118, 3168–3181 (1996)

    Article  CAS  Google Scholar 

  21. Yu, Y., Zhang, L., Eisenberg, A.: Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers. Macromolecules 31, 1144–1154 (1998)

    Article  CAS  Google Scholar 

  22. Luo, L., Eisenberg, A.: Thermodynamic size control of block copolymer vesicles in solution. Langmuir 17, 6804–6811 (2001)

    Article  CAS  Google Scholar 

  23. Choucair, A., Eisenberg, A.: Control of amphiphilic block copolymer morphologies using solution conditions. Eur. Phys. J. E 10, 37–44 (2003)

    Article  CAS  Google Scholar 

  24. Shen, H., Zhang, L., Eisenberg, A.: Thermodynamics of crew-cut micelle formation of polystyrene-b-poly (acrylic acid) diblock copolymers in DMF/H2O mixtures. J. Phys. Chem. B 101, 4697–4708 (1997)

    Article  CAS  Google Scholar 

  25. Zhou, Z., Chu, B., Peiffer, D.G.: Association characteristics of copolymer micelles in a solvent selective for the middle block. Langmuir 11, 1956–1965 (1995)

    Article  CAS  Google Scholar 

  26. Quintana, J.R., Janez, M.D., Katime, I.A.: Micellization of polystyrene-block-poly (ethylene/propylene) in toluene solutions of polystyrene. Langmuir 12, 2196–2199 (1996)

    Article  CAS  Google Scholar 

  27. Alexandridis, P., Holzwarth, J.F., Hatton, T.A.: Micellization of poly(ethylene oxide)-poly (propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27, 2414–2425 (1994)

    Article  CAS  Google Scholar 

  28. Alexandridis, P., Nivaggioli, T., Hatton, T.A.: Temperature effects on structural properties of Pluronic P104 and F108 PEO-PPO-PEO block copolymer solutions. Langmuir 11, 1468–1476 (1995)

    Article  CAS  Google Scholar 

  29. Wilhelm, M., Zhao, C.L., Wang, Y., Xu, R., Winnik, M.A.: Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 24, 1033–1040 (1991)

    Article  CAS  Google Scholar 

  30. Zhang, L., Eisenberg, A.: Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution. Macromolecules 32, 2239–2249 (1999)

    Article  CAS  Google Scholar 

  31. Rosen, M.J.: Surfactants and Interfacial Phenomena, 2nd edn. Wiley, New York (1988)

    Google Scholar 

  32. Price, C.: Micelle formation by block copolymers in organic solvents. Pure Appl. Chem. 55, 1563–1572 (1983)

    Article  CAS  Google Scholar 

  33. Ruiz, C.C., Aguiar, L.D.-L.J.: Self-assembly of tetradecyltrimethylammonium bromide in glycerol aqueous mixtures: a thermodynamic and structural study. J. Colloid Interface Sci. 305, 293–300 (2007)

    Article  Google Scholar 

  34. Tiwari, A.K., Sonu, Sowmiya, M., Saha, S.K.: Micellization behavior of gemini surfactants with hydroxyl substituted spacers in water and water–organic solvent mixed media: The spacer effect. J. Mol. Liq. 167, 18–27 (2012)

    Article  CAS  Google Scholar 

  35. Tiwari, A.K., Sonu, Saha, S.K.: Aggregation properties and thermodynamics of micellization of gemini surfactants with diethyl ether spacer in water and water–organic solvent mixed media. J. Chem. Thermodyn. 70, 24–32 (2014)

    Article  CAS  Google Scholar 

  36. Nagarajan, R., Ganesh, K.: Block copolymer self-assembly in selective solvents: Spherical micelles with segregated cores. J. Chem. Phys. 90, 5843–5856 (1989)

    Article  CAS  Google Scholar 

  37. Zhao, J.X., Xu, X.Z., Dong, W.J., Yu, H.B.: Self-assembly of some long-tail surfactants driven by water addition in ethanol. Colloids Surf. A 484, 253–261 (2015)

    Article  CAS  Google Scholar 

  38. Lee, D.J.: Enthalpy–entropy compensation in ionic micelle formation. Colloid Polym. Sci. 273, 539–543 (1995)

    Article  CAS  Google Scholar 

  39. Chen, L.J., Lin, S.Y., Huang, C.C.: Effect of hydrophobic chain length of surfactants on enthalpy–entropy compensation of micellization. J. Phys. Chem. B 102, 4350–4356 (1998)

    Article  CAS  Google Scholar 

  40. Sugihara, G., Hisatomi, M.: Enthalpy–entropy compensation phenomenon observed for different surfactants in aqueous solution. J. Colloid Interface Sci. 219, 31–36 (1999)

    Article  CAS  Google Scholar 

  41. Hisatomi, M., Abe, M., Yoshino, N., Lee, S., Nagadome, S., Sugihara, G.: Thermodynamic study on surface adsorption and micelle formation of a hybrid anionic surfactant in water by surface tension (drop volume) measurements. Langmuir 16, 1515–1521 (2000)

    Article  CAS  Google Scholar 

  42. Islam, MdN, Kato, T.: Temperature dependence of the surface phase behavior and micelle formation of some nonionic surfactants. J. Phys. Chem. B 107, 965–971 (2003)

    Article  CAS  Google Scholar 

  43. Lumry, R., Rajender, S.: Enthalpy–entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers 9, 1125–1227 (1970)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support from The National Natural Science Foundation of China (Grant No. 21273040) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxi Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Dong, W. & Xu, X. The Thermodynamics of Long-Tail Surfactant Aggregation Driven by Water Addition in Ethanol. J Solution Chem 45, 126–139 (2016). https://doi.org/10.1007/s10953-015-0426-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0426-x

Keywords

Navigation