Skip to main content
Log in

Theoretical Study of the Solvent Effect on the Methyltrioxorhenium/Hydrogen Peroxide System

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The effect of solvent on the stability and reactivity of methyltrioxorhenium (MTO) for activation of hydrogen peroxide (H2O2) was investigated theoretically. The possible geometries for all Re complexes present in this system, MTO, monoperoxo complexes [A: MeReO2(η 2–O2) and A·H 2 O: MeReO2(η 2–O2)(H2O)], and bisperxo complexes [B: MeReO(η 2–O2)2 and B·H 2 O: MeReO(η 2–O2)2(H2O)] were calculated. Based on the theoretical calculations, species A lacks coordinated water while species B·H 2 O definitely has water coordinated to the Re. The changes of thermodynamic parameters (ΔH and ΔG) for six reactions in the MTO/H2O2, system including formation of mono- and bisperoxo complexes, were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Herrmann, W.A., Wang, M.: Methyltrioxorhenium as catalyst of a novel aldehyde olefination. Angew. Chem. Int. Ed. Engl. 30, 1641–1643 (1991)

    Article  Google Scholar 

  2. Al-Rawashdeh, N.A.F., Al-Ajlouni, A., Bukallah, S., Bataineh, N.: Activation of H2O2 by methyltrioxorhenium(VII) inside β-cyclodextrin. J. Inclusion Phenom. Macrocycl. Chem. 70, 471–480 (2011)

    Article  CAS  Google Scholar 

  3. Ballistreri, F.P., Tomaselli, G.A., Toscano, R.M.: Selective oxidation reactions of diaryl-and dialkyldisulfides to sulfonic acids by CH3ReO3/hydrogen peroxide. Tetrahedron Lett. 50, 6231–6232 (2009)

    Article  CAS  Google Scholar 

  4. Di Giuseppe, A., Crucianelli, M., De Angelis, F., Crestini, C., Saladino, R.: Efficient oxidation of thiophene derivatives with homogeneous and heterogeneous MTO/H2O2 systems: a novel approach for oxidative desulfurization (ODS) of diesel fuel. Appl. Catal. B 89, 239–245 (2009)

    Article  Google Scholar 

  5. Espenson, J.H., Pestovsky, O., Huston, P., Staudt, S.: Organometallic catalysis in aqueous solution: oxygen transfer to bromide. J. Am. Chem. Soc. 116, 2869–2877 (1994)

    Article  CAS  Google Scholar 

  6. Kühn, F.E., Santos, A.M., Herrmann, W.A.: Organorhenium(VII) and organomolybdenum(VI) oxides: syntheses and application in olefin epoxidation. J. Chem. Soc. Dalton Trans. 7, 2483–2491 (2005)

    Google Scholar 

  7. Kühn, F.E., Scherbaum, A., Herrmann, W.A.: Methyltrioxorhenium and its applications in olefin oxidation, metathesis and aldehyde olefination. J. Organomet. Chem. 689, 4149–4164 (2004)

    Article  Google Scholar 

  8. Michel, T., Betz, D., Cokoja, M., Sieber, V., Kühn, F.E.: Epoxidation of α-pinene catalyzed by methyltrioxorhenium(VII): influence of additives, oxidants and solvents. J. Mol. Catal. A 340, 9–14 (2011)

    Article  CAS  Google Scholar 

  9. Owens, G.S., Arias, J., Abu-Omar, M.M.: Rhenium oxo complexes in catalytic oxidations. Catal. Today 55, 317–326 (2000)

    Article  CAS  Google Scholar 

  10. Yamazaki, S.: An effective procedure for the synthesis of acid-sensitive epoxides: use of 1-methylimidazole as the additive on methyltrioxorhenium-catalyzed epoxidation of alkenes with hydrogen peroxide. Org. Biomol. Chem. 8, 2377–2385 (2010)

    Article  CAS  Google Scholar 

  11. Zhu, Z., Espenson, J.H.: Oxidation of alkynes by hydrogen peroxide catalyzed by methylrhenium trioxide. J. Org. Chem. 60, 7728–7732 (1995)

    Article  CAS  Google Scholar 

  12. Bellemin-Laponnaz, S., Le Ny, J.P., Dedieu, A.: Mechanism of the allylic rearrangement of allyloxo metal oxo complexes: an ab initio theoretical investigation. Chem. Eur. J. 5, 57–64 (1999)

    Article  CAS  Google Scholar 

  13. Jacob, J., Espenson, J.H., Jensen, J.H., Gordon, M.S.: 1,3-Transposition of allylic alcohols catalyzed by methyltrioxorhenium. Organometallics 17, 1835–1840 (1998)

    Article  CAS  Google Scholar 

  14. Owens, G.S., Abu-Omar, M.M.: Methyltrioxorhenium-catalyzed epoxidations in ionic liquids. J. Chem. Soc. Chem. Commun. 1165–1166 (2000)

  15. Lahti, D.W., Espenson, J.H.: Oxidation of sulfoxides by hydrogen peroxide, catalyzed by methyltrioxorhenium(VII). Inorg. Chem. 39, 2164–2167 (2000)

    Article  CAS  Google Scholar 

  16. Bernini, R., Mincione, E., Cortese, M., Aliotta, G., Oliva, A., Saladino, R.: A new and efficient Baeyer–Villiger rearrangement of flavanone derivatives by the methyltrioxorhenium/H2O2 catalytic system. Tetrahedron Lett. 42, 5401–5404 (2001)

    Article  CAS  Google Scholar 

  17. Phillips, A., Romão, C.: Synthesis of g-butyrolactones by a Baeyer–Villiger oxidation with hydrogen peroxide, catalysed by methyltrioxorhenium. Eur. J. Org. Chem. 1767–1770 (1999)

  18. Eager, M.D., Espenson, J.H.: Activation of molecular oxygen in systems containing methyltrioxorhenium and its derivatives. Inorg. Chem. 38, 2533–2535 (1999)

    Article  CAS  Google Scholar 

  19. Adam, W., Mitchell, C.M., Saha-Möller, C.R., Weichold, O.: Host-guest chemistry in a urea matrix: catalytic and selective oxidation of triorganosilanes to the corresponding silanols by methyltrioxorhenium and the urea/hydrogen peroxide adduct. J. Am. Chem. Soc. 121, 2097–2103 (1999)

    Article  CAS  Google Scholar 

  20. Stankovic, S., Espenson, J.H.: Oxidation of methyl trimethylsilyl ketene acetals to α-hydroxyesters with urea hydrogen peroxide catalyzed by methyltrioxorhenium. J. Org. Chem. 65, 5528–5530 (2000)

    Article  CAS  Google Scholar 

  21. Adam, W., Herrmann, W.A., Lin, J., Saha-Moeller, C.R.: Catalytic oxidation of phenols to p-quinones with the hydrogen peroxide and methyltrioxorhenium(VII) system. J. Org. Chem. 59, 8281–8283 (1994)

    Article  CAS  Google Scholar 

  22. Hansen, P.J., Espenson, J.H.: Oxidation of chloride ions by hydrogen peroxide, catalyzed by methylrhenium trioxide. Inorg. Chem. 34, 5839–5844 (1995)

    Article  CAS  Google Scholar 

  23. Herrmann, W.A., Fischer, R.W., Marz, D.W.: Methyltrioxorhenium as catalyst for olefin oxidation. Angew. Chem. Int. Ed. Engl. 30, 1638–1641 (1991)

    Article  Google Scholar 

  24. Gonzales, J.M., Distasio Jr, R., Periana, R.A., Goddard III, W.A., Oxgaard, J.: Methylrhenium trioxide revisited: mechanisms for nonredox oxygen insertion in an M–CH3 bond. J. Am. Chem. Soc. 129, 15794–15804 (2007)

    Article  CAS  Google Scholar 

  25. Abu-Omar, M.M., Hansen, P.J., Espenson, J.H.: Deactivation of methylrhenium trioxide-peroxide catalysts by diverse and competing pathways. J. Am. Chem. Soc. 118, 4966–4974 (1996)

    Article  CAS  Google Scholar 

  26. Al-Ajlouni, A.M., Espenson, J.H.: Kinetics and mechanism of the epoxidation of alkyl-substituted alkenes by hydrogen peroxide, catalyzed by methylrhenium trioxide. J. Org. Chem. 61, 3969–3976 (1996)

    Article  CAS  Google Scholar 

  27. Espenson, J.H.: Atom-transfer reactions catalyzed by methyltrioxorhenium (VII)—mechanisms and applications. J. Chem. Soc. Chem. Commun. 479–488 (1999)

  28. Costa, P.J., Calhorda, M.J., Bossert, J., Daniel, C., Romão, C.C.: Photochemistry of methyltrioxorhenium revisited: a DFT/TD-DFT and CASSCF/MS-CASPT2 theoretical study. Organometallics 25, 5235–5241 (2006)

    Article  CAS  Google Scholar 

  29. Kuznetsov, M.L., Pombeiro, A.J.L.: Radical formation in the [MeReO3]-catalyzed aqueous peroxidative oxidation of alkanes: a theoretical mechanistic study. Inorg. Chem. 48, 307–318 (2009)

    Article  CAS  Google Scholar 

  30. Wu, Y.D., Sun, J.: Transition structures of epoxidation by CH3Re(O)2(O2) and CH3Re(O)(O2)2 and their water adducts. J. Org. Chem. 63, 1752–1753 (1998)

    Article  CAS  Google Scholar 

  31. Köstlmeier, S., Häberlen, O.D., Rösch, N., Herrmann, W.A., Solouki, B., Bock, H.: Density functional study on the electronic structure of trioxorhenium organyls. Organometallics 15, 1872–1878 (1996)

    Article  Google Scholar 

  32. Mealli, C., Lopez, J.A., Calhorda, M.J., Romao, C.C., Herrmann, W.A.: Re-C bond homolysis in alkyl-and arylrhenium trioxides: a qualitative MO interpretation. Inorg. Chem. 33, 1139–1143 (1994)

    Article  CAS  Google Scholar 

  33. Di Valentin, C., Gandolfi, R., Gisdakis, P., Rösch, N.: Allylic alcohol epoxidation by methyltrioxorhenium: a density functional study on the mechanism and the role of hydrogen bonding. J. Am. Chem. Soc. 123, 2365–2376 (2001)

    Article  Google Scholar 

  34. Gisdakis, P., Rösch, N., Bencze, É., Mink, J., Gonçalves, I.S., Kühn, F.E.: Monomer–dimer equilibria of oxo/imido complexes of heptavalent rhenium: theoretical and spectroscopic investigations. Eur. J. Inorg. Chem. 2001, 981–991 (2001)

    Article  Google Scholar 

  35. Hosseini, F.N., Kamali, K., Nabavizadeh, S.M.: Competition of methyltrioxorhenium (MTO) with osmium tetroxide for pyridines binding: ligand binding assay. Polyhedron 30, 814–820 (2011)

    Article  CAS  Google Scholar 

  36. Nabavizadeh, S.M.: Adduct formation of methyltrioxorhenium with mono-and bidentate nitrogen donors: formation constants. Inorg. Chem. 42, 4204–4208 (2003)

    Article  CAS  Google Scholar 

  37. Nabavizadeh, S.M.: Thermodynamic studies of the binding of bidentate nitrogen donors with methyltrioxorhenium (MTO) in CHCl3 solution. Dalton Trans. 1644–1648 (2005)

  38. Nabavizadeh, S.M., Akbari, A., Rashidi, M.: Solvent effect on the adduct formation of methyltrioxorhenium (MTO) and pyridine: enthalpy and entropy contributions. J. Chem. Soc. Dalton. Trans. 2423–2427 (2005)

  39. Nabavizadeh, S.M., Rashidi, M.: Lewis acidity of methyltrioxorhenium(VII) (MTO) based on the relative binding strengths of N-donors. J. Am. Chem. Soc. 128, 351–357 (2006)

    Article  CAS  Google Scholar 

  40. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A.S., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: GAUSSIAN 03, Revision B03. Gaussian Inc., Pittsburgh (2003)

    Google Scholar 

  41. Hay, P.J., Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985)

    Article  CAS  Google Scholar 

  42. Hariharan, P., Pople, J.: The influence of polarization functions on molecular hydrogenation energies. Theor. Chim. Acta 28, 213–222 (1973)

    Article  CAS  Google Scholar 

  43. Ehlers, A., Böhme, M., Dapprich, S., Gobbi, A., Höllwarth, A., Jonas, V., Köhler, K., Stegmann, R., Veldkamp, A., Frenking, G.: A set of f-polarization functions for pseudo-potential basis sets of the transition metals. Chem. Phys. Lett. 208, 111–114 (1993)

    Article  CAS  Google Scholar 

  44. Barone, V., Cossi, M.: Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998)

    Article  CAS  Google Scholar 

  45. Tomasi, J., Persico, M.: Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev. 94, 2027–2094 (1994)

    Article  CAS  Google Scholar 

  46. Glendening, E., Reed, A., Carpenter, J., Weinhold, F.: NBO Version 31, as Implemented in Gaussian 03, Revision, D 01. Gaussian Inc., Wallingford (2004)

    Google Scholar 

  47. Herrmann, W.A., Kiprof, P., Rypdal, K., Tremmel, J., Blom, R., Alberto, R., Behm, J., Albach, R.W., Bock, H.: Multiple bonds between main-group elements and transition metals. 86. Methyltrioxorhenium(VII) and trioxo (5-pentamethylcyclopentadienyl) rhenium(VII): structures, spectroscopy and electrochemistry. J. Am. Chem. Soc. 113, 6527–6537 (1991)

    Article  CAS  Google Scholar 

  48. Herrmann, W.A., Fischer, R.W., Scherer, W., Rauch, M.U.: Methyltrioxorhenium(VII) as catalyst for epoxidations: structure of the active species and mechanism of catalysis. Angew. Chem. Int. Ed. Engl. 32, 1157–1160 (1993)

    Article  Google Scholar 

  49. Gisdakis, P., Antonczak, S., Köstlmeier, S., Herrmann, W.A., Rösch, N.: Olefin epoxidation by methyltrioxorhenium: a density functional study on energetics and mechanisms. Angew. Chem. Int. Ed. Engl. 37, 2211–2214 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of the Islamic Azad University, Shiraz Branch, Iran is gratefully acknowledged. We thank Dr. A. Mohajeri for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatemeh Niroomand Hosseini or S. Masoud Nabavizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseini, F.N., Nabavizadeh, S.M. & Azimi, G. Theoretical Study of the Solvent Effect on the Methyltrioxorhenium/Hydrogen Peroxide System. J Solution Chem 42, 2137–2148 (2013). https://doi.org/10.1007/s10953-013-0101-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0101-z

Keywords

Navigation