Skip to main content
Log in

Volumetric Studies of 2,2,2-Cryptand in Aqueous and Aqueous KBr Solutions at 298.15 K: An Example Involving Solvent-Induced Hydrophilic and Hydrophobic Interactions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Density measurements of good precision are reported for aqueous and aqueous salt (KBr) solutions containing 2,2,2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) (~0.009 to ~0.24 mol·kg−1) for the binary systems and for the ternary system with ~0.1 mol·kg−1 2,2,2-cryptand and varying KBr concentrations (~0.06 to ~ 0.16 mol·kg−1) at 298.15 K. The density data have been used to study the variation of apparent molar volume (\( \varphi_{V} \)) of 2,2,2-cryptand and of KBr as a function of concentration. 2,2,2-Cryptand is a diamine and hence it is hydrolyzed in aqueous solutions and needs an appropriate methodology to obtain meaningful thermodynamic properties. We have adopted a method of hydrolysis correction developed initially by Cabani et al. and later by Kaulgud et al. to analyze our volumetric data for the aqueous solutions. The method is described and we were successful in obtaining the limiting partial molar volume of the bare (free) cryptand in water at 298.15 K. Volumes of ionization as well as volumes of complexation (with KBr) are calculated. Estimations of the apparent molar volume of 2,2,2-cryptand in CCl4 are also reported. There is a loss in volume for the cryptand on transferring it from CCl4 to water. The volume changes due to ionization for the cryptand in water are calculated to be –20.5 and –0.6 cm3·mol−1 for the mono- and di-protonation equilibria respectively, while the volume of complexation for K+ is +24.5 cm3·mol−1. The results are discussed in terms of conformation, protonation equilibria and selective encapsulation of K+ ions in cryptand cavities. The solution volume properties seem to depend upon water–solute interaction as well on the solute–solute association because of hydrophobic interactions caused by lowering of the charge density on formation of cryptand-K+ species in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Special section on supramolecular chemistry and self-assembly. Science 295, 2395–2421 (2002)

  2. Saenger, W.: Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. 19, 344–362 (1980)

    Article  Google Scholar 

  3. Weber, E., Toner, J.L., Goldberg, I., Vögtle, F., Laidler, D., Stoddard, J.F., Bartsch, R.A., Liotta, C.L.: Crown Ethers and Analogues. Wiley, Chichester (1989)

    Book  Google Scholar 

  4. Cram, D.J.: The design of molecular hosts, guests, and their complexes. Science 240, 760–767 (1988)

    Article  CAS  Google Scholar 

  5. Lehn, J.M.: Design of organic complexing agents, strategies towards properties. Struct. Bonding 16, 1–69 (1973)

    Article  CAS  Google Scholar 

  6. Lehn, J.M.: Cryptates: the chemistry of macropolycyclic inclusion complexes. Acc. Chem. Res. 11, 49–57 (1978)

    Article  CAS  Google Scholar 

  7. Lehn, J.M., Sauvage, J.P.: [2]-Cryptates: stability and selectivity of alkali and alkaline-earth macrobicyclic complexes. J. Am. Chem. Soc. 97, 6700–6707 (1975)

    Article  CAS  Google Scholar 

  8. Cox, B.G., Garcia-Ross, J., Schneider, H.: Solvent dependence of the stability of cryptate complexes. J. Am. Chem. Soc. 103, 1384–1389 (1981)

    Article  CAS  Google Scholar 

  9. Abraham, M.H., Danil De Namor, A.F., Schulz, R.A.: Thermodynamic studies of cryptand 222 and cryptates in water and methanol. J. Chem. Soc. Faraday I 76, 869–884 (1980)

    Article  CAS  Google Scholar 

  10. Morel-Desrosiers, N., Morel, J.P.: Volumes of complexation of cryptands with mono- and divalent cations in water and in methanol. J. Am. Chem. Soc. 103, 4743–4746 (1981)

    Article  CAS  Google Scholar 

  11. Morel-Desrosiers, N., Morel, J.P.: Heat capacities and volumes of monoprotonation and diprotonation of cryptand 222 in water at 298.15 K. J. Phys. Chem. 88, 1023–1027 (1984)

    Article  CAS  Google Scholar 

  12. Morel-Desrosiers, N., Morel, J.P.: Heat capacities of alkali and alkaline-earth 222-cryptates in water and methanol at 298.15 K. J. Phys. Chem. 89, 1541–1546 (1985)

    Article  CAS  Google Scholar 

  13. Dietrich, B., Lehn, J.M., Sauvage, J.P.: Diaza-polyoxa-macrocycles et macrobicycles. Tetrahedron Lett. 10, 2885–2888 (1969)

    Article  Google Scholar 

  14. Park, C.H., Simmons, H.E.: Macrobicyclic amines. III. Encapsulation of halide ions by in, in-1,(k + 2)-diazabicyclo[k.l.m.]alkane ammonium ions. J. Am. Chem. Soc. 90, 2431–2432 (1968)

    Article  CAS  Google Scholar 

  15. Kolhapurkar, R.R., Patil, P.K., Dagade, D.H., Patil, K.J.: Studies of thermodynamic properties of binary and ternary methanolic solutions containing KBr and 18-crown-6 at 298.15 K. J. Solution Chem. 35, 1357–1376 (2006)

    Article  CAS  Google Scholar 

  16. Mootz, D., Albert, A., Schaefgen, S., Staeben, D.: 18-crown-6 and water: crystal structure of a binary hydrate. J. Am. Chem. Soc. 116, 12045–12046 (1994)

    Article  CAS  Google Scholar 

  17. Fukuhara, K., Ikeda, K., Matsuura, H.: Raman spectroscopic study of the conformational equilibria in 18-crown-6 in water: predominant D3d conformation. Specrtochim. Acta Part A 50, 1619–1628 (1994)

    Article  Google Scholar 

  18. Patil, K.J., Kirschgen, T.M., Holz, M., Zeidler, M.D.: Nuclear magnetic relaxation studies for investigating the hydration of 15-crown-5 and 18-crown-6 ethers in aqueous and aqueous salt solutions. J. Mol. Liq. 81, 201–212 (1999)

    Article  CAS  Google Scholar 

  19. Patil, K.J., Heil, S.R., Holz, M., Zeidler, M.D.: Self-diffusion coefficient and apparent molar volume studies of crown ethers in aqueous (D2O) and CDCl3 solutions. Ber. Bunsenges. Phys. Chem. 101, 91–95 (1997)

    Article  CAS  Google Scholar 

  20. Patil, K., Pawar, R.: Near-infrared spectral studies for investigating the hydration of 18-crown-6 in aqueous solutions. J. Phys. Chem. B 103, 2256–2261 (1999)

    Article  CAS  Google Scholar 

  21. Patil, K.J., Pawar, R.B., Gokavi, G.S.: Studies of partial molar volumes of 18-crown-6 in water at 25°C. J. Mol. Liq. 75, 143–148 (1998)

    Article  CAS  Google Scholar 

  22. Patil, K., Pawar, R., Dagade, D.: Studies of osmotic and activity coefficients in aqueous and CCl4 solutions of 18-crown-6 at 25°C. J. Phys. Chem. A 106, 9606–9611 (2002)

    Article  CAS  Google Scholar 

  23. Dagade, D.H., Kolhapurkar, R.R., Terdale, S.S., Patil, K.J.: Thermodynamics of aqueous solutions of 18-crown-6 at 298.15 K: enthalpy and entropy effects. J. Solution Chem. 34, 415–426 (2005)

    Article  CAS  Google Scholar 

  24. Kowall, T., Geiger, A.: Molecular dynamics simulation study of 18-crown-6 in aqueous solution. 1. Structure and dynamics of the hydration shell. J. Phys. Chem. 98, 6216–6224 (1994)

    Article  CAS  Google Scholar 

  25. Ha, Y.L., Chakraborty, A.K.: Effects of solvent polarity and temperature on the conformational statistics of a simple macrocyclic polyether. J. Phys. Chem. 95, 10781–10787 (1991)

    Article  CAS  Google Scholar 

  26. Pelc, H.W., Hempelmann, R., Prager, M., Zeidler, M.D.: Dynamics of 18-crown-6 ether in aqueous solution studied by quasielastic neutron scattering. Ber. Bunsenges. Phys. Chem. 95, 592–598 (1991)

    Article  CAS  Google Scholar 

  27. Terdale, S.S., Dagade, D.H., Patil, K.J.: Thermodynamic studies of molecular interactions in aqueous α-cyclodextrin solutions: application of McMillan–Mayer and Kirkwood–Buff theories. J. Phys. Chem. B 110, 18583–18593 (2006)

    Article  CAS  Google Scholar 

  28. Terdale, S.S., Dagade, D.H., Patil, K.J.: Activity coefficient studies in ternary aqueous solutions at 298.15 K: H2O + α-cyclodextrin + potassium acetate and H2O + 18-crown-6 + hydroquinone systems. J. Chem. Eng. Data 54, 294–300 (2009)

    Article  CAS  Google Scholar 

  29. Dagade, D.H., Kolhapurkar, R.R., Patil, K.J.: Studies of osmotic coefficients and volumetric behaviour on aqueous solutions of β− cyclodextine at 298.15 K. Indian J. Chem. 43A, 2073–2080 (2004)

    CAS  Google Scholar 

  30. Kolhapurkar, R., Patil, K.: Studies of volumetric and activity behaviors of binary and ternary aqueous solutions containing β-cyclodextrin and glucose. J. Mol. Liq. 178, 185–191 (2013)

    Article  CAS  Google Scholar 

  31. Cabani, S., Conti, G., Lapori, L.: Volumetric properties of aqueous solutions of organic compounds. I. Cyclic ethers and cyclic amines. J. Phys. Chem. 76, 1338–1343 (1972)

    Article  CAS  Google Scholar 

  32. Cabani, S., Mollica, V., Lapori, L., Lobo, S.T.: Volume changes in the proton ionization of amines in water. 1. Morpholines and piperazines. J. Phys. Chem. 81, 982–987 (1977)

    Article  CAS  Google Scholar 

  33. Kaulgud, M.V., Bhagde, V.S., Shrivastava, A.: Effect of temperature on the limiting excess volumes of amines in aqueous solution. J. Chem. Soc., Faraday Trans. I 78, 313–321 (1982)

    Article  CAS  Google Scholar 

  34. Shaikh, V.R., Dagade, D.H., Hundiwale, D.G., Patil, K.J.: Volumetric studies of aqueous solutions of local anesthetical drug compounds [hydrochlorides of procaine (PC·HCl), lidocaine (LC·HCl) and tetracaine (TC·HCl)] at 298.15 K. J. Mol. Liq. 164, 239–242 (2011)

    Article  CAS  Google Scholar 

  35. Fortier, J.L., Leduce, P.A., Desnoyers, J.E.: Thermodynamic properties of alkali halides. II. Enthalpies of dilution and heat capacities in water at 25°C. J. Solution Chem. 3, 323–349 (1974)

    Article  CAS  Google Scholar 

  36. Garrod, J.E., Herrington, T.M.: Apparent molar volumes and temperatures of maximum density of dilute aqueous sucrose solutions. J. Phys. Chem. 74, 363–370 (1970)

    Article  CAS  Google Scholar 

  37. Vaslow, F.: The apparent molal volumes of the alkali metal chlorides in aqueous solution and evidence for salt-induced structure transitions. J. Phys. Chem. 70, 2286–2294 (1966)

    Article  CAS  Google Scholar 

  38. Millero, F.J.: In: Horne, R.A. (ed.) Water and Aqueous Solutions Structure, Thermodynamics and Transport Processes, pp. 519–595. Wiley-Interscience, New York (1972)

  39. Herrington, T.M., Mole, E.L.: Apparent molar volumes, temperatures of maximum density and osmotic coefficients of dilute aqueous hexamethylenetetramine solutions. J. Chem. Soc., Faraday Trans. I 78, 213–223 (1982)

    Article  CAS  Google Scholar 

  40. Cox, B.G., Knop, D., Schneider, H.: Kinetics of the protolysis of cryptands in basic aqueous solution. J. Am. Chem. Soc. 100, 6002–6007 (1978)

    Article  CAS  Google Scholar 

  41. Hoiland, H., Ringseth, J.A., Vikingstad, E.: Volume and compressibility changes of complex formation between 18-crown-6 and NaCl, KCl, and CsCl in water. J. Solution Chem. 7, 515–523 (1978)

    Article  Google Scholar 

  42. Hoiland, H., Ringseth, J.A., Brun, T.S.: Cation–crown ether complex formation in water. II. Alkali and alkaline earth cations and 12-crown-4, 15-crown-5, and 18-crown-6. J. Solution Chem. 8, 779–792 (1979)

    Article  Google Scholar 

  43. Jolicoeur, C., Lemelin, L.L., Lapalme, R.: Heat capacity of potassium-crown ether complexes in aqueous solution. Manifestations and quantitative treatment of important relaxational heat capacity effects. J. Phys. Chem. 83, 2806–2808 (1979)

    Article  CAS  Google Scholar 

  44. Desnoyers, J.E., Arel, M., Perron, G., Jolicoeur, C.: Apparent molal volumes of alkali halides in water at 25°C. Influence of structural hydration interactions on the concentration dependence. J. Phys. Chem. 73, 3346–3351 (1969)

    Article  CAS  Google Scholar 

  45. Zielenkiewicz, W., Kulikov, O.V., Kulis-Cwikla, I.: Excess enthalpies and apparent molar volumes of aqueous solutions of crown ethers and cryptand (222) at 25°C. J. Solution Chem. 22, 963–973 (1993)

    Article  CAS  Google Scholar 

  46. Ben-Naim, A.: Solvent induced interactions: hydrophobic and hydrophilic phenomena. J. Chem. Phys. 90, 7412–7425 (1989)

    Article  CAS  Google Scholar 

  47. Ben-Naim, A.: Strong forces between hydrophilic macromolecules: implications in biological systems. J. Chem. Phys. 93, 8196–8210 (1990)

    Article  CAS  Google Scholar 

  48. Friedman, H.L., Krishnan, C.V.: In: Franks, F. (ed.) Water A Comprehensive Treatise, vol. III, pp. 1–118. Plenum Press, New York (1973)

  49. Redlich, O., Mayer, D.M.: The molal volumes of electrolytes. Chem. Rev. 64, 221–227 (1964)

    Article  CAS  Google Scholar 

  50. Cabani, S., Conti, G., Lapori, L., Leva, G.: Volumetric properties of aqueous solutions of organic compounds. II. Chloride salts of cyclic amines. J. Phys. Chem. 76, 1343–1347 (1972)

    Article  CAS  Google Scholar 

  51. Padova, J.: Ion–solvent interaction. II. Partial molar volume and electrostriction: a thermodynamic approach. J. Chem. Phys. 39, 1552–1557 (1963)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. P. P. Mahulikar, Director, School of Chemical Sciences, North Maharashtra University, Jalgaon, Maharashtra (India), for providing all the facilities required for the experimental work. Mr. Vasim R. Shaikh and Mr. Abdul A. acknowledges the University Grants Commission, New Delhi (India), for financial assistance through the Maulana Azad National Fellowship (MANF) for Minority Students and Research Fellowships in Sciences for Meritorious Students (RFSMS), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kesharsingh J. Patil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaikh, V.R., Terdale, S.S., Abdul, A. et al. Volumetric Studies of 2,2,2-Cryptand in Aqueous and Aqueous KBr Solutions at 298.15 K: An Example Involving Solvent-Induced Hydrophilic and Hydrophobic Interactions. J Solution Chem 42, 2087–2103 (2013). https://doi.org/10.1007/s10953-013-0096-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0096-5

Keywords

Navigation