Skip to main content

Advertisement

Log in

Measurements of Dissociation Constants of Carbonic Acid in Synthetic Seawater by Means of a Cell Without Liquid Junction

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Using the “total hydrogen ion concentration scale”, the first, K 1, and second, K 2, stoichiometric dissociation constants of carbonic acid have been determined in synthetic seawater for temperature and salinity ranges of 0–30 °C and 1.5–40, respectively. The values of the K 1 have been determined potentiometrically by means of a cell without liquid junction, composed using a pH-glass electrode and silver–silver chloride electrode. This cell was equilibrated with CO2 at 1 atm total pressure. The same cell was used for the determination of K 2. Dissolved inorganic carbon was measured by the coulometric method, total alkalinity was known from the preparation of the synthetic seawater, and pH measurements provided the data required for the calculations of K 2. Estimated precision is about ±0.003 pK and uncertainty less than 0.01 pK for K 1 and twice that for K 2. Our K 1 data agree with “best” published data within ±0.01 for log10 K 1 in the 30–40 salinity range obtained for natural seawater, but become progressively higher as the salinity decreases. Our results for the second stoichiometric dissociation constants agree within ±0.015 for log10 K 2 in the 30–40 salinity range with available “best” published data for natural seawater, but become progressively lower as the salinity decreases. Since constants obtained in this paper are reliable for the high salinity range (25–40) and strive to the thermodynamic constants at 0 salinity, they are recommended for study of carbonate system in estuaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sarmiento, J.L., Gruber, N.: Ocean Biogeochemical Dynamics. Princeton University Press, Princeton (2006)

    Google Scholar 

  2. Clegg, S.L., Whitfield, M.: Activity coefficients in natural waters. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn, pp. 279–434. CRC Press, Roca Raton (1991)

    Google Scholar 

  3. Millero, F.J., Pierrot, D.: A Chemical equilibrium model for natural waters. Aquat. Geochem. 4, 153–199 (1998)

    Article  CAS  Google Scholar 

  4. Dickson, A.G.: Standard potential of the reaction AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO 4 in synthetic seawater from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990)

    Article  CAS  Google Scholar 

  5. Roy, R.N., Roy, L.N., Vogel, K.M., Porter-Moore, C., Pearson, T., Good, C.E., Millero, F.J., Campbell, D.M.: The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45 °C. Mar. Chem. 44, 249–267 (1993)

    Article  CAS  Google Scholar 

  6. Bradshaw, A.L., Brewer, P.G.: High precision measurements of alkalinity and total carbon dioxide in seawater by potentiometric titration—1. Presence of unknown protolyte(s)? Mar. Chem. 23, 69–86 (1988)

    Article  CAS  Google Scholar 

  7. Millero, F.J., Pierrot, D., Lee, K., Wanninkhof, R., Feely, R., Sabine, C.L., Key, R.M., Takahashi, T.: Dissociation constants for carbonic acid determined from field measurements. Deep-Sea Res. I 49, 1705–1723 (2002)

    Article  CAS  Google Scholar 

  8. Dickson, A.G., Sabine, C.L., Christian, J.R. (eds.): Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication (2007)

  9. Dickson, A.G., Millero, F.J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. 34, 1733–1743 (1987)

    Article  CAS  Google Scholar 

  10. Millero, F.J., Byrne, R.H., Wanninkhof, R., Feely, R., Clayton, T., Murphy, P., Lamb, M.F.: The internal consistency of CO2 measurements in the equatorial Pacific. Mar. Chem. 44, 269–280 (1993)

    Article  CAS  Google Scholar 

  11. Lee, K., Millero, F.J., Campbell, D.M.: The reliability of the thermodynamic constants for the carbonic acid in seawater. Mar. Chem. 55, 233–245 (1996)

    Article  CAS  Google Scholar 

  12. Wanninkhof, R., Lewis, E., Feely, R.A., Millero, F.J.: The optimal carbonate dissociation constants for determining surface water pCO2 from alkalinity and total inorganic carbon. Mar. Chem. 65, 291–301 (1999)

    Article  CAS  Google Scholar 

  13. Lee, K., Millero, F.J., Byrne, R.H., Feely, R.A., Wanninkhof, R.: The recommended dissociation constants for carbonic acid in seawater. Geophys. Res. Lett. 27, 229–232 (2000)

    Article  CAS  Google Scholar 

  14. Millero, F.J., Graham, T.B., Huang, F., Bustos-Serrano, H., Pierrot, D.: Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar. Chem. 100, 80–94 (2006)

    Article  CAS  Google Scholar 

  15. Harned, H.S., Scholes, S.R.: The ionization constants of HCO 3 from 0 to 50°. J. Am. Chem. Soc. 63, 1706–1709 (1941)

    Article  CAS  Google Scholar 

  16. Harned, H., Davis, R.: The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50°. J. Am. Chem. Soc. 65, 2030–2037 (1943)

    Article  CAS  Google Scholar 

  17. Hansson, I.: A new set of acidity constants for carbonic acid and boric acid in seawater. Deep-Sea Res. 20, 461–478 (1973)

    CAS  Google Scholar 

  18. Goyet, C., Poisson, A.: New determination of carbonic acid dissociation constants in seawater as function of temperature and salinity. Deep-Sea Res. 36, 1635–1654 (1989)

    Article  CAS  Google Scholar 

  19. Mehrbach, C., Culberson, C.H., Hawley, J.E., Pytkowicz, R.M.: Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973)

    Article  CAS  Google Scholar 

  20. Mojica Prieto, F.J., Millero, F.J.: The values of pK 1 + pK 2 for the dissociation of carbonic acid in seawater. Geochim. Cosmochim. Acta 66, 2529–2540 (2002)

    Article  CAS  Google Scholar 

  21. Lueker, T.J., Dickson, A.G., Keeling, C.D.: Ocean pCO2 from dissolved inorganic carbon, alkalinity, and equations for K 1 and K 2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000)

    Article  CAS  Google Scholar 

  22. McElligott, S., Byrne, R.H., Lee, K., Wanninkhof, R., Millero, F.J., Feely, R.A.: Discrete water column measurements of CO2 fugacity and pHT in seawater: a comparison of direct measurements and thermodynamic calculations. Mar. Chem. 60, 63–73 (1998)

    Article  CAS  Google Scholar 

  23. Whitfield, M., Butler, R.A., Covington, A.K.: The determination of pH in estuarine waters. I. Definition of pH scales and the election of buffers. Oceanol. Acta 8, 423–432 (1985)

    CAS  Google Scholar 

  24. MacInnes, D.A., Belcher, D.: The thermodynamic ionization constants of carbonic acid. J. Am. Chem. Soc. 55, 2630–2646 (1933)

    Article  CAS  Google Scholar 

  25. Johnson, K.M., King, A.E., Sieburth, J.M.: Coulometric TCO2 analysis for marine studies: an introduction. Mar. Chem. 16, 61–82 (1985)

    Article  CAS  Google Scholar 

  26. Pitzer, K.S.: Ionic interaction approach: theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn, pp. 75–153. CRC Press, Roca Raton (1991)

    Google Scholar 

  27. De Stefano, C., Foti, C., Gianguzza, A., Sammartano, S.: The interaction of amino acids with the major constituents of natural waters at different ionic strengths. Mar. Chem. 72, 61–76 (2000)

    Article  Google Scholar 

  28. Crea, F., Giacalone, A., Gianguzza, A., Piazzese, D., Sammartano, S.: Modelling of natural and synthetic polyelectrolyte interactions in natural waters by using SIT, Pitzer and ion pairing approaches. Mar. Chem. 99, 93–105 (2006)

    Article  CAS  Google Scholar 

  29. Dickson, A.G.: pH scales and proton-transfer reactions in saline media such as sea water. Geochim. Cosmochim. Acta 48, 2299–2308 (1984)

    Article  CAS  Google Scholar 

  30. Campbell, D.M., Millero, F.J., Roy, R., Roy, L., Lawson, M., Vogel, K.M., Moore, C.P.: The standard potential for the hydrogen–silver, silver chloride electrode in synthetic seawater. Mar. Chem. 44, 221–233 (1993)

    Article  CAS  Google Scholar 

  31. Dickson, A.G., Riley, J.P.: The estimation of acid dissociation constants in seawater media from potentiometric titrations with strong base. I. The ion product of water—K w. Mar. Chem. 7, 89–99 (1979)

    Article  CAS  Google Scholar 

  32. Wong, C.S., Tishchenko, P.Ya., Johnson, W.K.: The effects of high CO2 molality on the carbon dioxide equilibrium of seawater. J. Chem. Eng. Data 50, 822–831 (2005)

    Article  CAS  Google Scholar 

  33. Weiss, R.F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203–215 (1974)

    Article  CAS  Google Scholar 

  34. Wong, C.S., Tishchenko, P.Ya., Johnson, W.K.: Solubility of carbon dioxide in aqueous HCl and NaHCO3 solutions at 278 to 298 K. J. Chem. Eng. Data 50, 817–821 (1974)

    Article  Google Scholar 

  35. Bruevich, S.V.: Instruction for the Performing of Chemical Examination of Seawater. Glavsevmorput’, Moscow (1944)

    Google Scholar 

  36. Talley, L.D., Tishchenko, P.Ya., Luchin, V., Nedashkovskiy, A., Sagalaev, S., Kang, D.-J., Warner, M., Min, D.-H.: Atlas of Japan (East) Sea hydrographic properties in summer, 1999. Prog. Oceanogr. 61, 277–348 (2004)

    Article  Google Scholar 

  37. Bates, R.G.: Determination of pH, Theory and Practice. Wiley, New York (1973)

    Google Scholar 

  38. Pitzer, K.S.: A consideration of Pitzer’s equations for activity and osmotic coefficients in mixed electrolytes. J. Chem. Soc. Faraday Trans. I 80, 3451–3454 (1984)

    Article  CAS  Google Scholar 

  39. Tishchenko, P.Ya., Il’ina, E.M., Chichkin, R.V., Wong, C.S.: pH measurements in estuary by means of cell without liquid junction. Okeanologiya 42, 32–41 (2002). (in Russian)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Grants from the Russian Foundation for Basic Research: 11-05-00241-a, 11-05-98543-r_vostok_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Ya. Tishchenko.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 432 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tishchenko, P.Y., Wong, C.S. & Johnson, W.K. Measurements of Dissociation Constants of Carbonic Acid in Synthetic Seawater by Means of a Cell Without Liquid Junction. J Solution Chem 42, 2168–2186 (2013). https://doi.org/10.1007/s10953-013-0094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0094-7

Keywords

Navigation