Skip to main content
Log in

Polycarboxylic acids in sea water: acid–base properties, solubilities, activity coefficients, and complex formation constants at different salinities

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

This paper reports the results of the investigations carried out in synthetic sea water at different salinities for different classes of polycarboxylic acids. The investigations can be summarized as follows: (a) Determination of the protonation constants in such multicomponent solution in a salinity range 15 ≤ S ≤ 45, at t = 25 °C, for the linear dicarboxylic acids HOOC-(CH2) n COOH (0 ≤ n ≤ 8), and aromatic polycarboxylic acids (o-phthalic and 1,2,4-benzenetricarboxylic acids). For malonic, succinic, 1,2,3-benzenetricarboxylic, and 1,2,3,4-benzenetetracarboxylic acids, investigations were also carried out at t = 10 and 37 °C; (b) Determination of the total and intrinsic solubility (S T and S 0, respectively) of the linear dicarboxylic acids HOOC-(CH2) n -COOH (0 ≤ n ≤ 8), o-phthalic, 1,2,4-benzenetricarboxylic acids at t = 25 °C and 15 ≤ S ≤ 45, and calculation of the corresponding Setschenow parameters and activity coefficients; (c) Modeling the dependence of the experimental and literature protonation constants of the polycarboxylic acids on salinity, acid concentration, temperature, and number of the methylene groups in the molecules by means of new empirical equations; (d) Determination of the specific interaction parameters in synthetic sea water of the ionic species of the acids by means of the specific ion interaction theory and Pitzer models; (e) Determination of the protonation constant of the anion A1.117− of the single salt BA at different salinities and temperatures; (f) Determination and modeling in dependence of the salinity of the ΔH/kJ mol−1 of protonation of the linear dicarboxylic acids and of the A1.117− anion, by means of a Debye-Hückel type equation; (g) Determination of the complex formation constants (log β BpLHi) between the cation B1.117+ and the different deprotonated species of the carboxylic acids at different salinities and temperatures. Independent of the thermodynamic aqueous properties determined, a significant dependence of these parameters (log β Hi , log β BpLHi, ΔH/kJ mol−1 of protonation, S T and S 0) on the ionic medium, salinity, and temperature was observed. Moreover, the huge number of data collected allowed us to propose some empirical equations to model/predict the behavior of these classes of O-donor ligands in a multicomponent solution such as synthetic sea water.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Ac:

Acetic acid

Adip:

Adipic acid

Aze:

Azelaic acid

1,2,4-Benz:

1,2,4-Benzenetricarboxylic acid

Btc:

1,2,3,4-Butantetracarboxylic acid

Cit:

Citric acid

Glu:

Glutaric acid

Mal:

Malonic acid

Mala:

Malic acid

Mlt:

1,2,3,4,5,6-Benzenehexacarboxylic acid

Oda:

Diglycolic acid

Pht:

Phthalic acid

Pim:

Pimelic acid

Tar:

Tartaric acid

Tca:

1,2,3-Propanetricarboxylic acid

Toda:

Diethylenetrioxydiacetic acid

Seb:

Sebacic acid

Sub:

Suberic acid

Succ:

Succinic acid

A:

Debye-Hückel coefficient

A ϕ :

Debye-Hückel coefficient of the Pitzer model

BA:

Single salt

c :

Concentration expressed in mol dm−3

c , c 0 :

Parameters for the dependence of protonation constants on ionic strength valid for I → ∞ and I → 0

C.I.:

Confidence interval

C L :

Ligand concentration (mol dm−3)

C L → 0:

Ligand concentration extrapolated at infinite dilution

E 0 :

Standard electrode potential

E j :

Junction potential

EDTA:

Ethylenediaminetetraacetic acid

e.m.f.:

Electromotive force

HPLC:

High Performance Liquid Chromatography

I :

Ionic strength (mol dm−3 or mol kg−1)

ISE-[H+]:

Ion Selective Electrode (ISE) for hydrogen ion (H+)

ja :

Junction potential coefficient

k m :

Setschenow coefficient

k , k 0 :

Parameters that account for the nonlinear variation of k with (c, m) BA and valid for (c, m) BA → ∞ and (c, m) BA→ 0

K w :

Ionic product of water

log β Hi :

Overall protonation constants of the ith step

log t K H :

Protonation constant at infinite dilution

m :

Concentration expressed in mol kg−1

m BA :

Concentration of the supporting electrolyte (single salt in this case) in mol kg−1

m s :

Desired molality value

m 35 :

Molality value of the SSW at S = 35

MX:

Generic single binary electrolyte

\(n_{{\left( { - {\text{CH}}_{ 2} - } \right)}}\) :

Number of methylene groups

p i :

Empirical parameters

Q:

Accuracy of calorimetric apparatus

S :

Salinity expressed in ‰ (g/kg gram of salts/kg sea water)

s, s , and s 0 :

Parameters that account for the nonlinear variation of log S T with (c, m) BA s and s 0 are valid for (c, m) BA → ∞ and (c, m) BA→ 0

SIT:

Specific ion Interaction Theory

S 0 :

Intrinsic solubility or solubility of the neutral species

SSW:

Synthetic Sea Water

S T :

Total solubility

S 00 :

Intrinsic solubility or solubility of the neutral species at infinite dilution

S T0 :

Total solubility at infinite dilution (pure water)

Std. dev.:

Standard deviation

TRIS:

Tris(hydroxymethyl)aminomethane

z M and z X :

Charges of the M and X ions

β(0), β(1), C (ϕ) :

Interaction parameters between two ions of opposite sign

γ:

Activity coefficient

γ, γ 0 :

Activity coefficients of the neutral species in the salt solution and in pure water, respectively

\(\Delta \varepsilon_{i}^{\prime }\) :

Parameter proportional to the temperature gradient of the ion-interaction coefficient

H :

Enthalpy change value (kJ mol−1)

Δ\(H_{\text{i}}^{\text{H0}}\) :

Enthalpy of protonation at infinite dilution

ΔG :

Free Gibbs energy change

ΔS :

Entropy change

ε:

Specific interaction coefficient

θ:

Interaction coefficient of ions of the same charge

λ:

Coefficient of the Pitzer model

ν:

Sum of the number of M and X ions

νM, νX :

Number of M and X ions

σ :

Standard deviation in the fit

ψ :

Interaction coefficient for triple interactions

References

  1. Buffle J (1988) Complexation reactions in aquatic systems; analytical approach. J. Wiley & Sons Ltd./Ellis Horwood Ltd, Chichester

    Google Scholar 

  2. Crea F, De Stefano C, Gianguzza A, Piazzese D, Sammartano S (2003) Chem Speciat Bioavailab 15:75

    Article  CAS  Google Scholar 

  3. Crea F, De Stefano C, Gianguzza A, Piazzese D, Sammartano S (2004) Chem Speciat Bioavailab 16:1

    Article  CAS  Google Scholar 

  4. Crea F, D’Ascenzo G, De Robertis A, Materazzi S, Sammartano S (2003) Talanta 61:611

    Article  CAS  Google Scholar 

  5. Crea P, De Stefano C, Milea D, Sammartano S (2008) Mar Chem 112:142

    Article  CAS  Google Scholar 

  6. De Stefano C, Foti C, Gianguzza A, Sammartano S (2000) Mar Chem 72:61

    Article  Google Scholar 

  7. De Stefano C, Gianguzza A, Piazzese D, Sammartano S (2004) Mar Chem 86:33

    Article  Google Scholar 

  8. De Stefano C, Gianguzza A, Piazzese D, Sammartaus S (1999) Anal Chim Acta 398:103

    Article  Google Scholar 

  9. De Stefano C, Sammartano S, Gianguzza A, Piazzese D (2002) Talanta 58:405

    Article  Google Scholar 

  10. Crea F, De Robertis A, Sammartano S (2004) J Solution Chem 33:499

    Article  CAS  Google Scholar 

  11. De Stefano C, Foti C, Gianguzza A, Piazzese D, Sammartano S (2002) Binding ability of inorganic major components of seawater towards some classes of ligands, metals and organometallic cations. In: Gianguzza A, Pelizzetti E, Sammartano S (eds) Chemistry of marine waters and sediments. Springer Verlag, Berlin, p 221

    Chapter  Google Scholar 

  12. Daniele PG, De Robertis A, De Stefano C, Sammartano S, Rigano C (1985) J Chem Soc Dalton Trans 2353

  13. Foti C, Gianguzza A, Piazzese D, Orecchio S (2002) Ann Chim (Rome, Italy) 92:551

  14. Dien K (1970) Documenta Geigy Scientific Tables, vol 7. Geigy, Basle

    Google Scholar 

  15. Cornils B, Lappe P (2006) Dicarboxylic Acids, Aliphatic. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim

  16. Battaglia G, Crea F, Crea P, Sammartano S (2005) Ann Chim (Rome, Italy) 95:643

  17. Crea P, De Stefano C, Millero FJ, Sammartano S, Sharma VK (2010) Aquat Geochem 16:447

    Article  CAS  Google Scholar 

  18. De Stefano C, Foti C, Gianguzza A, Piazzese D (1998) Chem Speciation Bioavailability 10:19

    Article  Google Scholar 

  19. Bretti C, Crea F, Giuffrè O, Sammartano S (2008) J Solution Chem 37:183

    Article  CAS  Google Scholar 

  20. Cigala R, Crea F, De Stefano C, Lando G, Milea D, Sammartano S (2012) Amino Acids 43:629

    Article  CAS  Google Scholar 

  21. Cigala RM, Crea F, Lando G, Milea D, Sammartano S (2010) J Chem Thermodyn 42:1393

    Article  CAS  Google Scholar 

  22. Crea F, De Stefano C, Giuffrè O, Sammartano S (2004) J Chem Eng Data 49:109

    Article  CAS  Google Scholar 

  23. De Robertis A, De Stefano C, Foti C, Gianguzza A, Piazzese D, Sammartano S (2000) J Chem Eng Data 45:996

    Article  Google Scholar 

  24. Martell AE, Motekaitis RJ, Smith RM (1997) NIST Database, vol 46. Gaithersburg

  25. Martell AE, Smith RM (1977) Critical Stability Constants, vol 3. Plenum Press, New York

    Google Scholar 

  26. Martell AE, Smith RM, Motekaitis RJ (2004) Critically selected stability constants of metal complexes, vol 46. Standard Reference Database, Gaithersburg

    Google Scholar 

  27. May PM, Murray K (2000) Joint expert speciation system. JESS Primer, Murdoch Western Australia

    Google Scholar 

  28. Pettit D, Powell K (1997) Stability Constants Database. Academic software, IUPAC, Otley

    Google Scholar 

  29. Sillen LG, Martell AE (1971) Stability constants of metal ion complexes, vol supplement special Publ. 25. The Chemical Society, London

  30. Crea F, Cucinotta D, De Stefano C, Milea D, Sammartano S, Vianelli G (2012) Eur J Pharm Sci 47:661

    Article  CAS  Google Scholar 

  31. Cataldo S, Crea F, Gianguzza A, Pettignano A, Piazzese D (2009) J Mol Liq 148:120

    Article  CAS  Google Scholar 

  32. Battaglia G, Cigala RM, Crea F, Sammartano S (2008) J Chem Eng Data 53:363

    Article  CAS  Google Scholar 

  33. Bretti C, Cigala RM, Crea F, Foti C, Sammartano S (2008) Fluid Phase Equilib 263:43

    Article  CAS  Google Scholar 

  34. Bretti C, Crea F, De Stefano C, Sammartano S (2008) Fluid Phase Equilib 272:47

    Article  CAS  Google Scholar 

  35. Bretti C, Crea F, De Stefano C, Sammartano S, Vianelli G (2012) Fluid Phase Equilib 314:185

    Article  CAS  Google Scholar 

  36. Bretti C, Crea F, De Stefano C, Sammartano S, Vianelli G (2012) J Chem Eng Data 57:1851

    Article  CAS  Google Scholar 

  37. Bretti C, Crea F, Foti C, Sammartano S (2005) J Chem Eng Data 50:1761

    Article  CAS  Google Scholar 

  38. Bretti C, Crea F, Foti C, Sammartano S (2006) J Chem Eng Data 51:1660

    Article  CAS  Google Scholar 

  39. Bretti C, De Stefano C, Manfredi G, Sammartano S (2011) J Mol Liq 158:50

    Article  CAS  Google Scholar 

  40. Bretti C, Crea F, De Stefano C, Foti C, Materazzi S, Vianelli G (2013) J Chem Eng Data 58:2835

    Article  CAS  Google Scholar 

  41. Bretti C, Cigala RM, Crea F, De Stefano C, Vianelli G (2015) Eur J Pharm Sci 78:37

    Article  CAS  Google Scholar 

  42. Daniele PG, Foti C, Gianguzza A, Prenesti E, Sammartano S (2008) Coord Chem Rev 252:1093

    Article  CAS  Google Scholar 

  43. Setschenow JZ (1889) Z Phys Chem 4:117

    Google Scholar 

  44. De Stefano C, Foti C, Gianguzza A, Rigano C, Sammartano S (1994) Ann Chim (Rome, Italy) 84:159

  45. Brønsted JN (1922) J Am Chem Soc 44:877

    Article  Google Scholar 

  46. Ciavatta L (1980) Ann Chim (Rome, Italy) 70:551

  47. Guggenheim EA, Turgeon JC (1955) Trans Faraday Soc 51:747

    Article  CAS  Google Scholar 

  48. Biedermann G (1975) Ionic media. In: Dahlem workshop on the nature of seawater. Dahlem Konferenzen, Berlin, p 339

  49. Pitzer KS (1991) Activity coefficients in Electrolyte Solutions, vol 2. CRC Press, Boca Raton

    Google Scholar 

  50. Long FA, McDevit WF (1952) Chem Rev 51:119

    Article  CAS  Google Scholar 

  51. Crea F, Giacalone A, Gianguzza A, Piazzese D, Sammartano S (2006) Mar Chem 99:93

    Article  CAS  Google Scholar 

  52. De Stefano C, Foti C, Gianguzza A, Sammartano S (1998) Chem Speciat Bioavailab 10:27

    Article  Google Scholar 

  53. De Robertis A, De Stefano C, Sammartano S (1994) Chem Speciat Bioavailab 6:65

    Google Scholar 

  54. Chopa D, Guru Row TN (2007) J Indian Inst Sci 87:167

  55. De Robertis A, Foti C, Sammartano S, Gianguzza A (1997) In: Gianguzza A, Pelizzetti E, Sammartano S (eds) Marine chemistry—an environmental analytical approach. Kluwer academic Publishers, Amsterdam, p 59

    Google Scholar 

  56. Bretti C, Foti C, Sammartano S (2004) Chem Speciat Bioavailab 16:105

    Article  CAS  Google Scholar 

  57. Millero FJ, Leung WH (1976) Am J Sci 276:1035

    Article  CAS  Google Scholar 

  58. Bretti C, Foti C, Porcino N, Sammartano S (2006) J Solution Chem 35:1401

    Article  CAS  Google Scholar 

  59. http://www.chemexper.com/

  60. De Stefano C, Foti C, Giuffrè O, Sammartano S (2001) J Chem Eng Data 46:1417

    Article  Google Scholar 

  61. Bretti C, De Stefano C, Foti C, Sammartano S, Vianelli G (2012) J Chem Thermodyn 44:154

    Article  CAS  Google Scholar 

  62. De Stefano C, Mineo P, Rigano C, Sammartano S (1997) Computer tools for the speciation of natural fluids. In: Gianguzza A, Pelizzetti E, Sammartano S (eds) Marine chemistry—an environmental analytical chemistry approach. Kluwer Academic Publishers, Amsterdam

    Google Scholar 

  63. De Robertis A, De Stefano C, Rigano C (1989) Thermochim Acta 138:141

    Article  Google Scholar 

  64. De Robertis A, De Stefano C, Sammartano S, Rigano C (1987) Talanta 34:933

    Article  Google Scholar 

  65. Crea F, De Robertis A, Sammartano S (2003) Ann Chim (Rome, Italy) 93:1027

  66. Crea F, Robertis A, De Stefano C, Sammartano S (2007) J Solution Chem 36:479

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank University of Messina for the partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concetta De Stefano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bretti, C., Cigala, R.M., Crea, F. et al. Polycarboxylic acids in sea water: acid–base properties, solubilities, activity coefficients, and complex formation constants at different salinities. Monatsh Chem 147, 1481–1505 (2016). https://doi.org/10.1007/s00706-016-1758-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-016-1758-y

Keywords

Navigation