Skip to main content
Log in

Liquid–Liquid Equilibrium Data for 1-Ethyl-3-methylimidazolium Acetate–Thiophene–Diesel Compound: Experiments and Correlations

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Extraction of thiophene from cyclohexane, isooctane and toluene were performed using the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) at T=298.15 K. The liquid–liquid equilibrium (LLE) experiments were performed on three systems, namely: [EMIM][OAc]–thiophene–cyclohexane, [EMIM][OAc]–thiophene–isooctane and [EMIM][OAc]–thiophene–toluene. The LLE data showed that [EMIM][OAc] has a higher selectivity at low concentration of thiophene and also showed that the hydrocarbon-rich phase is free of ionic liquid. This implies that there will be no cross contamination and the ionic liquid will be a non-pollutant in fuel after extraction. Further, the amount of hydrocarbon in the ionic-liquid-rich phase is very small. This implies that ionic liquid can be regenerated with negligible loss of fuel. LLE data was then correlated using the NRTL and UNIQUAC models. These showed root mean square deviation (RMSD) values of 0.82 % and 1.46 % for the isooctane system, 1.37 % and 1.57 % for the cyclohexane system and 1.39 % and 1.53 % for the toluene system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

[EMIM]:

1-Ethyl 3-methylimidazolium

[Tf2N]:

Bis-(trifluoromethylsulfonyl)-imide

[MeSO3]:

Methansalfonate

[EtSO4]:

Ethyl sulfate

[OAc]:

Acetate

[AMIM]:

1-Alkyl-3-methylimidazolium

[AlCl3-TMAC]:

Trimethylamine hydrochloride

[OMIM]:

1-Methyl-3-octylimidazolium

S :

Selectivity

RMSD:

Root mean square deviation

NMR:

Nuclear magnetic resonance

x i :

Mole fraction of component i

t:

Thiophene

hc:

Hydrocarbon

E:

Extract

R:

Raffinate

G :

Gibbs energy

R :

Universal gas constant

T :

Temperature, K

M :

Number of tie lines

C :

Number of components in the LLE system

\(x_{{i}}^{p}\) :

Mole fraction of component i in phase p

H i :

Peak area under NMR spectra of species i

Z :

Coordination number

L :

Staverman–Guggenheim combinatorial term parameter

g ji :

Average interaction energy for the interaction of molecules of component j with molecules of component i

A ij :

interaction energy for the interaction of molecules of component j with molecules of component i

L 1 :

Flow rate of extract

L 2 :

Flow rate of raffinate

F :

Feed rate

\(z_{f}^{i}\) :

Feed concentration of component i

γ i :

Activity coefficient of solute i in solution S

β :

Distribution coefficient

θ :

Area fraction in UNIQUAC equation

τ :

NRTL/UNIQUAC interaction parameter

Φ :

Segment fraction in UNIQUAC equation

α :

NRTL non-randomness parameter

θ i :

Composition-weighted volume fraction

ϕ i :

Composition-weighted surface-area fraction

Ψ :

Ratio of extract to feed (L 1/F)

References

  1. E.U. Directive: 2005/33/EC and previous directives. See, for example, http://www.dieselnet.com/standards/eu/ld.html

  2. Topsoe, H., Clausen, B.S., Massoth, F.E.: Hydrotreating Catalysis, Science and Technology. Springer, Berlin (1996)

    Google Scholar 

  3. Speight, J.G.: The Desulfurization of Heavy Oils and Residue. Dekker, New York (1981)

    Google Scholar 

  4. Botchwey, C., Dalai, A.K., Adjaye, J.: Product selectivity during hydrotreating and mild hydrocracking of bitumen-derived gas oil. J. Energy Fuels 17, 1372–1381 (2003)

    Article  CAS  Google Scholar 

  5. Brennecke, J.F., Magninn, E.J.: Ionic liquids: innovative fluids for chemical processing. AIChE J. 4, 2384–2389 (2001)

    Article  Google Scholar 

  6. Rogers, R.D., Huddleston, J.G., Willauer, H.D., Swatloski, R.P., Visser, A.E.: Room temperature ionic liquids as novel media for clean liquid–liquid extraction. Chem. Comm. 1765–1766 (1998)

  7. Earle, M.J., Esperanca, J.M.M.S.S., Gilea, M.A., Lopes, J.N.C., Rebelo, L.P.N., Magee, J.W., Seddon, K.R., Widegren, J.A.: The distillation and volatility of ionic liquids. Nature 439, 831–834 (2006)

    Article  CAS  Google Scholar 

  8. Heintz, A.: Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review. J. Chem. Thermodyn. 37, 525–535 (2005)

    Article  CAS  Google Scholar 

  9. Nie, Y., Li, C., Sun, A., Meng, H., Wang, Z.: Extractive desulfurization of gasoline using imidazolium-based phosphoric ionic liquids. Energy Fuels 20, 2083–2087 (2006)

    Article  CAS  Google Scholar 

  10. Marianne, M., Stefan, S., Karen, T., Tanja, J., Jürgen, A., Johannes, R., Urs, W.B., Bernd, J.: The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green Chem. 9, 1198–1207 (2007)

    Article  Google Scholar 

  11. Dongbin, Z., Yongcheng, L., Ziding, Z.: Toxicity of ionic liquids. Clean: Soil Air Water 35, 42–48 (2007)

    Article  Google Scholar 

  12. Freire, M.G., Neves, C.M.S.S., Marrucho, I.M., Coutinho, J.A.P., Fernandes, A.M.: Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids. J. Phys. Chem. A 114, 3744–3749 (2010)

    Article  CAS  Google Scholar 

  13. Kumar, A.A.P., Banerjee, T.: Thiophene separation with ionic liquids for desulphurization: a quantum chemical approach. Fluid Phase Equilib. 278, 1–8 (2009)

    Article  CAS  Google Scholar 

  14. Holbrey, J.D., Reichert, W.M., Swatloski, R.P., Broker, G.A., Pitner, W.R., Seddon, K.R., Rogers, R.D.: Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chem. 4, 407–413 (2002)

    Article  CAS  Google Scholar 

  15. Zhang, S., Zhang, Z.C.: Novel properties of ionic liquids in selective sulphur removal from fuels at room temperature. Green Chem. 4, 376–379 (2002)

    Article  CAS  Google Scholar 

  16. Alonso, L., Arce, A., Francisco, M., Soto, A.: Liquid-liquid equilibria of ([C2mim][EtSO4] + thiophene + 2,2,4-trimethylpentane) and ([C2mim][EtSO4] + thiophene + toluene): experimental data and correlation. J. Solution Chem. 37, 1355–1363 (2008)

    Article  CAS  Google Scholar 

  17. Alonso, L., Arce, A., Francisco, M., Soto, A.: Liquid–liquid equilibria for [C8mim][NTf2] + thiophene + 2,2,4-trimethylpentane or + toluene. J. Chem. Eng. Data 53, 1750–1755 (2008)

    Article  CAS  Google Scholar 

  18. Alonso, L., Arce, A., Francisco, M., Rodríguez, O., Soto, A.: Gasoline desulfurization using extraction with [C8mim][BF4] ionic liquid. AIChE J. 53, 3108–3115 (2007)

    Article  CAS  Google Scholar 

  19. Alonso, L., Arce, A., Francisco, M., Soto, A.: Extraction ability of nitrogen-containing compounds involved in the desulfurization of fuels by using ionic liquids. J. Chem. Eng. Data 55, 3262–3267 (2010)

    Article  CAS  Google Scholar 

  20. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 135–144 (1968)

  21. Abrams, D.S., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21, 116–128 (1975)

    Article  CAS  Google Scholar 

  22. Houck, C.R., Joines, J.A., Kay, M.G.: A genetic algorithm for function optimization: a Matlab implementation. NCSU, North Carolina State University (1995)

  23. Seader, J.D., Henley, E.J.: Separation Process Principles, 2nd edn. Wiley, New York (2005)

    Google Scholar 

  24. Banerjee, T., Singh, M.K., Sahoo, R.K., Khanna, A.: Volume, surface and UNIQUAC interaction parameters for imidazolium based ionic liquids via polarizable continuum model. Fluid Phase Equilib. 234, 64–76 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamal Banerjee.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(DOCX 147 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheruku, S.K., Banerjee, T. Liquid–Liquid Equilibrium Data for 1-Ethyl-3-methylimidazolium Acetate–Thiophene–Diesel Compound: Experiments and Correlations. J Solution Chem 41, 898–913 (2012). https://doi.org/10.1007/s10953-012-9840-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9840-5

Keywords

Navigation