Skip to main content
Log in

PCM Study of Some N-Nitroso-N′,N′-dimethylphenylurea Biological Molecules: A Natural Bond Orbital Analysis

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The density functional B3LYP method with the 6-31++G(d,p) basis set was used to investigate several N-nitroso-N′,N′-dimethylphenylurea biological molecules in MeCN solution. Geometries obtained from DFT calculation were used to perform natural bond orbital (NBO) analysis. The p characters of two nitrogen natural hybrid orbital (NHO), \(\sigma_{\mathrm{N}_{3}\mbox{\scriptsize{--}}\mathrm{N}_{2}}\) bond orbitals, increase with increasing σ p values of the substituents on the benzene, which results in a lengthening of the N3–N2 bond. The p character of the oxygen NHO \(\sigma_{\mathrm{O}_{1}\mbox{\scriptsize{--}}\mathrm{N}_{2}}\) bond orbital decreases with increasing σ p values of the substituents on the benzene, which results in a shortening of the N2=O1 bond. It is also noted that decreased occupancy of the localized \(\sigma_{\mathrm{N}_{3}\mbox{\scriptsize{--}}\mathrm{N}_{2}}\) orbital occurs in the idealized Lewis structure, or increased occupancy of \(\sigma_{\mathrm{N}_{3}\mbox{\scriptsize{--}}\mathrm{N}_{2}}^{*}\) of the non-Lewis orbital, and their subsequent impact on molecular stability and geometry (bond lengths) are also related to the resulting p character of the corresponding nitrogen NHO of the \(\sigma_{\mathrm{N}_{3}\mbox{\scriptsize{--}}\mathrm{N}_{2}}\) bond orbital. In addition, the partial charge distribution on the skeletal atoms shows that the electrostatic repulsion or attraction between atoms can give a significant contribution to the intra- and intermolecular interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bulter, A.R., Williams, D.L.H.: The physiological role of nitric oxide. Chem. Soc. Rev. 22, 233–241 (1993)

    Article  Google Scholar 

  2. Richter-Addo, G.B., Legzdins, P.: Introduction: nitric oxide chemistry. J. Chem. Rev. 102, 857–860 (2002)

    Article  CAS  Google Scholar 

  3. Cheng, J.-P., Xian, M., Wang, K., Zhu, X.-Q., Yin, Z., Wang, P.-G.: Heterolytic and homolytic Y–NO bond energy scales of nitroso-containing compounds: chemical origin of NO release and NO capture. J. Am. Chem. Soc. 120, 10266–10267 (1998)

    Article  CAS  Google Scholar 

  4. Cheng, J.-P., Wang, K., Yin, Z., Zhu, X.-Q., Lu, Y.: NO affinity. The driving force of nitric oxide (NO) transfer in biomimetic N-nitrosoacetanilide and N-nitrososulfoanilide systems. Tetrahedron Lett. 39, 7925–7928 (1998)

    Article  CAS  Google Scholar 

  5. Zhu, X.-Q., He, J.-Q., Li, Q., Ming, X., Lu, J.-M., Cheng, J.-P.: N–NO bond dissociation energies of N-nitroso diphenylamine derivatives (or analogues) and their radical anions: implications for the effect of reductive electron transfer on N–NO bond activation and for the mechanisms of NO transfer to nitranions. J. Org. Chem. 65, 6729–6735 (2000)

    Article  CAS  Google Scholar 

  6. Zhu, X.-Q., Hao, W.-F., Tang, H., Wang, C.-H., Cheng, J.-P.: Determination of N–NO bond dissociation energies of N-methyl-N-nitrosobenzenesulfonamides in acetonitrile and application in the mechanism analyses on NO transfer. J. Am. Chem. Soc. 127, 2696–2708 (2003)

    Article  Google Scholar 

  7. Casado, J., Castro, A., Manuel Lorenzo, F., Mosquera, M.: A kinetic study of the denitrosation and hydrolysis reactions of N-nitrosophenylureas. Bull. Soc. Chim. Fr. 4, 597–601 (1985)

    Google Scholar 

  8. Meijide, F., Vázquez Tato, J., Casado, J., Castro, A., Mosquera, M.: Kinetic study of the phenylurea–nitrous acid reaction: evidence for an O-nitrosation initial step. J. Chem. Soc., Perkin Trans. 2, 1759–1765 (1987)

  9. Li, X.-H., Tang, Z.-X., Zhang, X.-Z.: PCM study of bond dissociation energies in N-nitroso compounds. J. Mol. Struct., Theochem 899, 42–45 (2009)

    Article  CAS  Google Scholar 

  10. Parr, R.G., Yang, W.: Density Functional Theory of Atoms and Molecules. Oxford University Press, Oxford (1989)

    Google Scholar 

  11. Seminario, J.M., Politzer, P.: Modern Density Functional Theory: A Tool for Chemistry. Elsevier, Amsterdam (1995)

    Google Scholar 

  12. Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  13. Becke, A.D.: Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction. J. Chem. Phys. 97, 9173–9177 (1992)

    Article  CAS  Google Scholar 

  14. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Gakrzewski, Z.V., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head, G.M., Replogle, E.S., Pople, J.A.: Gaussian 03, Revision B.02. Gaussian Inc., Pittsburgh, PA, 2003

  15. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  16. Miehlich, B., Savin, A., Stoll, H., Preuss, H.: Results obtained with the correlation energy density functionals of Becke and Lee–Yang and Parr. Chem. Phys. Lett. 157, 200–206 (1989)

    Article  CAS  Google Scholar 

  17. Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992)

    Article  Google Scholar 

  18. Perdew, J.P.: Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822–8824 (1986)

    Article  Google Scholar 

  19. Cossi, M., Barone, V., Cammi, R., Tomasi, J.: Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. J. Chem. Phys. Lett. 255, 327–335 (1996)

    Article  CAS  Google Scholar 

  20. Barone, V., Cossi, M., Tomasi, J.: Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J. Chem. Phys. 107, 3210–3221 (1997)

    Article  CAS  Google Scholar 

  21. Mennucci, B., Tomasi, J.: Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem. Phys. 106, 5151–5158 (1997)

    Article  CAS  Google Scholar 

  22. Glendening, E.D., Reed, A.E., Carpenter, J.E., Weinhold, F.: NBO Version 3.1, 1992

  23. Reed, A.E., Weinhold, F.: Natural localized molecular orbitals. J. Chem. Phys. 83, 1736–1740 (1985)

    Article  CAS  Google Scholar 

  24. Reed, A.E., Weinstock, R.B., Weinhold, F.: Natural population analysis. J. Chem. Phys. 83, 735–746 (1985)

    Article  CAS  Google Scholar 

  25. Reed, A.E., Weinhold, F.: Natural bond orbital analysis of near-Hartree–Fock water dimer. J. Chem. Phys. 78, 4066–4073 (1983)

    Article  CAS  Google Scholar 

  26. Foster, J.P., Weinhold, F.: Natural hybrid orbitals. J. Am. Chem. Soc. 102, 7211–7218 (1980)

    Article  CAS  Google Scholar 

  27. Chocholousova, J., Spirko, V., Hobza, P.: First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–H⋯O and improper blue-shifted C–H⋯O hydrogen bonds. Phys. Chem. Chem. Phys. 6, 37–41 (2004)

    Article  CAS  Google Scholar 

  28. Cao, C.Z.: Substituent Effects in Organic Chemistry. Science Press, Beijing (2003)

    Google Scholar 

  29. Luo, Y.R.: Handbook of Bond Dissociation Energies in Organic Compounds. CRC Press, Boca Raton (2003)

    Google Scholar 

  30. Reed, A.E., Curtiss, L.A., Weinhold, F.: interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 88, 899–926 (1988)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank the National Natural Science Foundation of China (Grant 10774039) and the grants from Development Program in Science and Technology of Henan Province (No. 102300410114 and No. 112300410206), Henan University of Science and Technology for Young Scholars (No. 2009QN0032), for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, RZ., Li, XH., Gong, XY. et al. PCM Study of Some N-Nitroso-N′,N′-dimethylphenylurea Biological Molecules: A Natural Bond Orbital Analysis. J Solution Chem 41, 828–839 (2012). https://doi.org/10.1007/s10953-012-9831-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9831-6

Keywords

Navigation