Skip to main content
Log in

Optimized geometry, spectroscopic characterization and nonlinear optical properties of carbazole picrate: a density functional theory study

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The molecular modeling of carbazole picrate (CP) was carried out by using B3LYP and HSEH1PBE levels of density functional theory and 6-311++G(d,p) basis set by means of Gaussian 09 revision D.01 program. These methods have been used to determine the optimized molecular geometries, vibrational frequencies, electronic transitions and bonding features of the title compound. The computed small energy gap between HOMO and LUMO energies shows that the charge transfer occurs within the investigated compound. Additionally, the intensive interactions characterized by high stabilization energies were the powerful indicators of intra- and intermolecular charge transfer interactions. The obtained molecular dipole moment (μ), polarizability (\(\left\langle \alpha \right\rangle\)) and hyperpolarizability (\(\left\langle \beta \right\rangle\)) indicates that CP exhibits considerable nonlinear optical characteristic. The theoretical structural parameters such as bond lengths and bond angles are in a good agreement with the experimental values of the title compound. Additionally, the hydrogen bonding interactions were visualized via molecular electrostatic potential surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W Maneerat, T Ritthiwigrom, S Cheenpracha, T Promgool, K Yossathera and S Deachathai, et al J. Nat. Prod. 75 741 (2012)

    Article  Google Scholar 

  2. H Liu, C J Li, J Z Yang, N Ning, Y K Si and L Li, et al J. Nat. Prod. 75 677 (2012)

    Article  Google Scholar 

  3. U Songsiang, T Thongthoom, C Boonyarat and C Yenjai Claurailas A–D, J. Nat. Prod. 74 208 (2011)

    Article  Google Scholar 

  4. H-M Xia, G-Q Ou Yang, C-J Li, J-Z Yang, J Ma, D Zhang, Y Li, L Li and D-M Zhang, Fitoterapia 83 103 (2015)

    Google Scholar 

  5. S K Chen, B Y Chen and H Li Flora of Reipublicae Popularis Sinicae (Zhongguo Zhiwu Zhi) (Beijing: Science Press) 43 135 (1997)

  6. G W Gribble Synlett 289 (1991)

  7. G W Gribble in: A Brossi (Ed.), The Alkaloids Academic (San Diego: Academic) (1990)

  8. M Saravanabhavan, K Sathya, V G Puranik and M Sekar Spectrochimica Acta A: Mol. Biomol. Spectrosc. 118 399 (2014)

    Article  ADS  Google Scholar 

  9. H J Knolker and K R Reddy Chem. Rev. 102 4303 (2002)

    Article  Google Scholar 

  10. R Huber, M T Gonzalez, S Wu, M Langer, S Grunder, V Horhoiu, M Mayor, M R Bryce, C S Wang, R Jitchati, C Schonenberger and M Calame J. Am. Chem. Soc. 130 1080 (2008)

    Article  Google Scholar 

  11. S A Trammell, M Moore, D Lowy and N Lebedev J. Am. Chem. Soc. 130 5579 (2008)

    Article  Google Scholar 

  12. R Yamada, H Kumazawa, T Noutoshi, S Tanaka and H Tada Nano Lett. 8 1237 (2008)

    Article  ADS  Google Scholar 

  13. S Liu, P Jiang, G L Song, R Liu and H J Zhu Dyes Pigm. 81 218 (2009)

  14. T H Xu, R Lu, X L Liu, P Chen, X P Qiu and Y Y Zhao J. Org. Chem. 73 1809 (2008)

    Article  Google Scholar 

  15. E Gondek, J Niziol, A Danel, I V Kityk, M Pokladko, J Sanetra and E Kulig J. Lumin. 128 1831 (2008)

    Article  ADS  Google Scholar 

  16. T Uma Devi, N Lawrence, R Ramesh Babu and K Ramamurthi Spectrochimica Acta A 71 340 (2008)

  17. S Altürk, Ö Tamer, D Avcı and Y Atalay J. Organomet. Chem. 797 110 (2015)

    Article  Google Scholar 

  18. V Crasta, V Ravindrachary, R F Bhajantri and R Gonsalves J. Cryst. Growth 267 129 (2004)

  19. C K Lakshmana Perumal, A Arulchakkaravarthi, P Santhanaraghavan and P Ramaswami J. Cryst. Growth 240 212 (2002)

  20. D S Chemla and J Zyss (Eds.), Non-linear Optical Properties of Organic Molecules and Crystals (London: Academic Press) 1 726 (1987)

  21. L Joseph, D Sajan, V Shettigar, K Chaitanya, N Misra, T Sundius and I Němec Mater. Chem. Phys. 141 248 (2013)

    Google Scholar 

  22. M J Frisch, G W Trucks, H B Schlegel, G E Scuseria, M A Robb and J R Cheeseman et al., Gaussian 09, Rev D.1, Gaussian, Inc., Wallingford CT, (2013)

  23. R Dennington, T. Keith and J Millam: Semichem Inc., Shawnee Mission KS, GaussView, Version 5, (2009)

  24. J Heyd and G E Scuseria J. Chem. Phys. 121 1187 (2004)

    Article  ADS  Google Scholar 

  25. J Heyd and G E Scuseria J. Chem. Phys. 120 7274 (2004)

    Article  ADS  Google Scholar 

  26. J Heyd, J E Peralta, G E Scuseria and R L Martin J. Chem. Phys. 123 1 (2005)

    Google Scholar 

  27. J Heyd, G E Scuseria and M Ernzerhof J. Chem. Phys. 124 219906 (2006)

    ADS  Google Scholar 

  28. A V Krukau, O A Vydrov, A F Izmaylov and G E Scuseria J. Chem. Phys. 125 224106 (2006)

    ADS  Google Scholar 

  29. A D Becke J. Chem. Phys. 98 5648 (1993)

    Article  ADS  Google Scholar 

  30. C Lee, W Yang and R G Parr Phys. Rev. B 37 785 (1988)

    Article  ADS  Google Scholar 

  31. S I Gorelsky SWizard Program Revision 4.5, University of Ottawa, Ottawa, Canada, http://www.sg.chem.net/(2010)

  32. F Weinhold, C Landis and Valency Bonding: A Natural Bond Orbital DonorAcceptor Perspective, (Cambridge: Cambridge University Press) (2005)

    Book  Google Scholar 

  33. M Goto, H Kanno, E Sugaya, Y Osa and H Takayanagi, Analytical Sciences X-ray Structure Analytical Online 20 x39 (2004)

    Article  Google Scholar 

  34. Ö Tamer, S A Tamer, Ö İdil, D Avcı, H Vural and Y Atalay J. Mol. Struct. 1152 399 (2018)

    Article  ADS  Google Scholar 

  35. Ö Tamer J. Mol. Struct. 1144 370 (2017)

    Article  ADS  Google Scholar 

  36. G Socrates Infrared Characteristic Group Frequencies (New York: Willey) (1980)

  37. G Varsanyi Vibrational Spectra of Benzene Derivates (Budapest: Academic Kiaclo) (1973)

  38. R M Silverstein G C Bassle and T C Morrill Spectrometric Identifaction of Oganic Compounds (Chister: Willey) (1991)

    Google Scholar 

  39. H Milani Moghaddam and M Damchi Jelodar Indian J. Phys. 87 99 (2013)

    Article  ADS  Google Scholar 

  40. H Pir, N Günay, D Avcı and Yusuf Atalay Spectrochimica Acta A 96 916 (2012)

    ADS  Google Scholar 

  41. Y Atalay, D Avcı and A Başoğlu Struct. Chem. 19 239 (2008)

    Article  Google Scholar 

  42. T Vijayakumar, I H Joe, C P R Nair and V S Jayakumar Chem. Phys. 343 83 (2008)

  43. P Kaatz, E A. Donley and D P. Shelton J. Chem. Phys. 108 849 (1998)

    Article  ADS  Google Scholar 

  44. C Adant, M Dupuis and J L Bredas Int. J. Quantum Chem. 56 507 (2004)

    Google Scholar 

  45. A Datta and S K Pati, D Davis and K Sreekumar J. Phys. Chem. A 109 4112 (2005)

    Article  ADS  Google Scholar 

  46. A Datta, F Terenziani and A Panielli Chem. Phys. Chem. 7 2168 (2006)

    Google Scholar 

  47. A Datta and S K Pati Chem. Soc. Rev. 35 1305 (2006)

    Article  Google Scholar 

  48. C Sridevi, N P Selvam, G Shanthi and G Velraj J. Mol. Struct. 1039 40 (2012)

    Google Scholar 

  49. C Sridevi and G Velraj Spectrochimica Acta A 107 34 (2013)

    Article  Google Scholar 

  50. Ö Tamer, D Avcı and Y Atalay Spectrochimica Acta A 117 78 (2014)

    ADS  Google Scholar 

  51. Ö Tamer et al. Spectrochimica Acta A 117 13 (2014)

    Article  ADS  Google Scholar 

  52. Ö Tamer, B Sarıboğa and İ Ucar Struct. Chem. 23 659 (2012)

    Article  Google Scholar 

  53. F Weinhold, C Landis and Valency Bonding: A Natural Bond Orbital Donor-Acceptor Perspective (Cambridge: Cambridge University Press) (2005)

    Book  Google Scholar 

  54. H P Gümüş, Ö Tamer, D Avcı and Yusuf Atalay Spectrochimica Acta A 132 183 (2014)

    Article  ADS  Google Scholar 

  55. H Pir, N Gunay, Ö Tamer, D Avcı and Y Atalay Spectrochimica Acta A 112 331 (2013)

    ADS  Google Scholar 

  56. H Pir, N Gunay, Ö Tamer, D Avcı, E Tarcan and Y Atalay Mater. Sci. Pol. 31 357 (2013)

    Article  ADS  Google Scholar 

  57. K Fukui Science 218 747 (1982)

    Article  ADS  Google Scholar 

  58. J Chocholousova, V V Spirko and P Hobza Phys. Chem. Chem. Phys. 6 37 (2000)

  59. P Politzer and J S Murray Theor. Chem. Acc. 108 134 (2002)

    Article  Google Scholar 

  60. J S Murray and K Sen: Molecular Electrostatic Potentials, Concepts and Applications, (Amsterdam: Elsevier) (1996)

    Google Scholar 

  61. I Alkorta and J J Perez International J. Quantum Chem. 57 123 (1996)

    Article  Google Scholar 

  62. E Scrocco and J Tomasi, in: P. Lowdin (Ed.), Advances in Quantum Chemistry (New York: Academic Press) (1978)

  63. K Rajalakshmi, S Gunasekaran and S Kumaresan Indian J. Phys. 89 525 (2015)

    Article  ADS  Google Scholar 

  64. S Altürk, N Boukabcha and N Benhalima Indian J. Phys. 91 501 (2017)

    Article  ADS  Google Scholar 

  65. H Pir, Ö Tamer, D Avcı and Y Atalay Indian J. Phys. 90 79 (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ö Tamer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arıoğlu, Ç., Tamer, Ö., Avcı, D. et al. Optimized geometry, spectroscopic characterization and nonlinear optical properties of carbazole picrate: a density functional theory study. Indian J Phys 92, 1613–1621 (2018). https://doi.org/10.1007/s12648-018-1258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1258-5

Keywords

PACS Nos.

Navigation