Skip to main content
Log in

Raman-Spectroscopic Measurements of the First Dissociation Constant of Aqueous Phosphoric Acid Solution from 5 to 301 °C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Dilute aqueous phosphoric acid solutions have been studied by Raman spectroscopy at room temperature and over a broad temperature range from 5 to 301 °C. R-normalized spectra (Bose–Einstein correction) have been constructed and used for quantitative analysis. The vibrational modes of H3PO4(aq) (pseudo C3v symmetry) have been assigned. The band with the highest intensity, the symmetric stretch ν s{P(OH)3}(ν 1(a 1)) is strongly polarized while ν 4(e), the antisymmetric stretch ν asP(OH)3) is depolarized. The stretching mode of the phosphoryl group (–P=O), ν 2(a1) occurs at 1178 cm−1 and is polarized. In the range between 300 and 600 cm−1, the deformation modes are observed. The deformation mode, δ{PO–H}, involving the O–H group has been detected at 1250 cm−1 as a very weak and broad mode.

In addition to the modes of phosphoric acid, modes of the dissociation product \(\mathrm{H}_{2}\mathrm{PO}_{4}^{ -}(\mathrm{aq})\) have been observed. The mode at 1077 cm−1 has been assigned to ν s{PO2}, and the mode at 877 cm−1 to ν s{P(OH)2} which is overlapped by ν s{P(OH)3} of H3PO4(aq). The modes of \(\mathrm{H}_{2}\mathrm{PO}_{4}^{ -} \mathrm{(aq)}\) have been measured in dilute solution and were assigned and presented as well. H3PO4 is hydrated in aqueous solution, which can be verified with Raman spectroscopy by following the modes ν 2(a1) and ν 1(a1) as a function of temperature. These modes show a strong temperature dependency. The mode ν 1(a1) broadens and shifts to lower wavenumbers. The mode ν 2(a1) on the other hand, shifts to higher wavenumbers and broadens considerably with increases in temperature. At 301 °C the phosphoric acid is almost molecular in nature. In very dilute H3PO4 solutions at room temperature, however, the dissociation product, \(\mathrm{H}_{2}\mathrm{PO}_{4}^{ -} \mathrm{(aq)}\) is the dominant species. In these dilute H3PO4(aq) solutions no spectroscopic features could be detected for a hydrogen bonded dimeric species of the formula \(\mathrm{H}_{5}\mathrm{P}_{2}\mathrm{O}_{8}^{ -}\) (or the neutral dimeric acid H6P2O8).

Pyrophosphate formation, although favored at high temperatures, could not be detected in dilute solution even at 301 °C due to the high water activity. In highly concentrated solutions, however, pyrophosphate formation is observable and in hydrate melts the formation of pyrophosphate is already noticeable at room temperature.

Quantitative Raman measurements have been carried out to follow the dissociation of H3PO4(aq) over a very broad temperature range. In the temperature interval from 5.0 to 301.0 °C the pK 1 values for H3PO4(aq) have been determined and thermodynamic data have been derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The published formulas (15) and (17) in Ref. [22] are misprinted. The current formulae are the correct ones.

References

  1. Greenwood, N.N., Earnshaw, A.: Chemistry of the Elements, 2nd edn., pp. 516–527. Butterworth and Heinemann, Oxford (1997)

    Google Scholar 

  2. Voet, D., Voet, J.: Biochemistry, 2nd edn., pp. 428–434. Wiley, New York (1995)

    Google Scholar 

  3. Nelson, D.L., Cox, M.M.: Lehninger, Principles of Biochemistry, pp. 325–362. Worth Publishers, New York (2000)

    Google Scholar 

  4. Bjerrum, N., Unmack, U.: Electrometric measurements with hydrogen electrodes in mixtures of acids and bases with salts; the dissociation constants of water, phosphoric acid, citric acid, and glycine. Kgl. Danske Videnskab. Selskab, Math.-Fys. Medd. 9, 221–227 (1929)

    Google Scholar 

  5. Mason, C.M., Culvern, J.B.: Electrical conductivity of orthophosphoric acid and of sodium and potassium dihydrogen phosphates at 25 °C. J. Am. Chem. Soc. 71, 2387–2393 (1949)

    Article  CAS  Google Scholar 

  6. Edwards, O.W., Huffman, E.O.: Diffusion of aqueous solutions of phosphoric acid at 25 °C. J. Phys. Chem. 63, 1830–1833 (1959)

    Article  CAS  Google Scholar 

  7. Pitzer, K.S.: The heats of ionization of water, ammonium hydroxide, carbonic, phosphoric, and sulfuric acids. The variation of ionization constants with temperature and the entropy change with ionization. J. Am. Chem. Soc. 59, 2365–2371 (1937)

    Article  CAS  Google Scholar 

  8. Elmore, K.L., Mason, C.M., Christensen, J.H.: Activity of orthophosphoric acid in aqueous solution at 25 °C from vapour pressure measurements. J. Am. Chem. Soc. 68, 2528–2532 (1946)

    Article  CAS  Google Scholar 

  9. Elmore, K.L., Hatfield, J.D., Dunn, R.L., Jones, A.D.: Dissociation of phosphoric acid solutions at 25 °C. J. Phys. Chem. 69, 3520–3525 (1965)

    Article  CAS  Google Scholar 

  10. Selvaratnam, M., Spiro, M.: Transference numbers of orthophosphoric acid and the limiting equivalent conductance of the \(\mathrm{H}_{2}\mathrm{PO}_{4}^{-}\) ion in water at 25 °C. Trans Faraday Soc. 61, 360–373 (1965)

    Article  CAS  Google Scholar 

  11. Irani, R.R., Taulli, T.A.: Metal complexing by phosphorus compounds—IX. Thermodynamics of ionization of ortho-, pyro- and tripolyphosphoric acids. J. Inorg. Nucl. Chem. 28, 1011–1020 (1966)

    Article  CAS  Google Scholar 

  12. Baldwin, W.G., Sillén, L.G.: Some phosphate equilibria. I. The dissociation of phosphoric acid in 3 M NaClO4. Ark. Kemi 31, 391–399 (1968)

    Google Scholar 

  13. Childs, C.W.: Equilibria in dilute aqueous solutions of orthophosphates. J. Phys. Chem. 76, 2956–2960 (1969)

    Article  Google Scholar 

  14. Lown, D.A., Thirsk, H.R.: Proton transfer conductance in aqueous solution. Part 2. Effect of pressure on the electrical conductivity of concentrated ortho-phosphoric acid in water at 25 °C. Trans. Faraday Soc. 67, 149–152 (1971)

    Article  CAS  Google Scholar 

  15. Ferroni, G.: Potentiometric studies on association and dissociation equilibria of orthophosphoric acid water–KCl 3 M medium at 25 °C. Electrochim. Acta 21, 283–286 (1976)

    Article  CAS  Google Scholar 

  16. Green, L.W., Kruus, P., McGuire, M.J.: Acid dissociation constants and rates as studied ultrasonic absorption. Can. J. Chem. 54, 3152–3162 (1976)

    Article  CAS  Google Scholar 

  17. Izatt, R.M., Gillespie, S.E., Oscarson, J.L., Wang, P., Renuncio, J.A.R., Pando, C.: The effect of temperature and pressure on the protonation of o-phosphate ions at 348.15 and 398.15 K, and at 1.52 and 12.50 MPa. J. Solution Chem. 23, 449–468 (1994)

    Article  CAS  Google Scholar 

  18. Nims, L.F.: The first dissociation constant of phosphoric acid from 0 to 50 °C. J. Am. Chem. Soc. 56, 1110–1112 (1934)

    Article  CAS  Google Scholar 

  19. Bates, R.G.: First dissociation constant of phosphoric acid from 0 to 60 °C; Limitations of the electromotive force method for moderately strong acids. J. Res. Natl. Bur. Stand. 47, 127–134 (1951)

    CAS  Google Scholar 

  20. Mesmer, R.E., Baes, C.F. Jr.: Phosphoric acid dissociation equilibria in aqueous solutions to 300 °C. J. Solution Chem. 3, 307–322 (1974)

    Article  CAS  Google Scholar 

  21. Read, A.J.: The first ionization constant from 25 to 200 °C and 2000 bar for orthophosphoric acid. J. Solution Chem. 17, 213–224 (1988)

    Article  CAS  Google Scholar 

  22. Rudolph, W.W.: Raman- and infrared-spectroscopic investigations of dilute aqueous phosphoric acid solutions. Dalton Trans. 39, 9642–9653 (2010)

    Article  CAS  Google Scholar 

  23. Erdey, L.: Theorie und Praxis der Gravimetrischen Analyse, Bd. III, 177 pp. Akademiai Kiadó, Budapest (1964)

    Google Scholar 

  24. Müller, G.O.: Lehrbuch der angewandten Chemie. Bd. 3. Quantitative anorganisches Praktikum. Hirzel, Leipzig (1978)

    Google Scholar 

  25. Rudolph, W., Schönherr, S.: I. Zur schwingungsspektroskopischen Charakterisierung des Hexaquoaluminium(III)-komplexions. Z. Phys. Chem. (Leipzig) 270, 1121–1134 (1989)

    CAS  Google Scholar 

  26. Rudolph, W.W., Irmer, G.: Raman- and infrared-spectroscopic investigations on aqueous alkali metal phosphate solutions and DFT-calculations of \(\mathrm{PO}_{4}^{3-}\)–water clusters. Appl. Spectrosc. 61, 1312–1324 (2007)

    Article  CAS  Google Scholar 

  27. Henderson, M.P., Miasek, V.I., Swaddle, T.W.: Kinetics of thermal decomposition of aqueous perchloric acid. Can. J. Chem. 49, 317–324 (1971)

    Article  Google Scholar 

  28. Rudolph, W.: Structure and dissociation of hydrogen sulphate ion in aqueous solution over a broad temperature range: a Raman study. Z. Phys. Chem. 194, 73–79 (1996)

    Article  CAS  Google Scholar 

  29. Rudolph, W., Steger, W.E.: Dissoziation, Struktur und schneller Protonenaustausch der Phosphorsäure in verdünnter wäßriger Lösung. Z. Phys. Chem. 172, 49–59 (1991)

    CAS  Google Scholar 

  30. Rudolph, W., Steger, W.E.: Schwingungsspektroskopische und Kernresonanz-Untersuchungen der Aluminium–Phosphatokomplexbildung im System AlCl3–H3PO4–H2O. Z. Phys. Chem. 176, 185–198 (1992)

    Article  CAS  Google Scholar 

  31. Preston, C.M., Adams, W.A.: A laser Raman spectroscopic study of aqueous phosphoric acid. Can. J. Spectrosc. 22, 125–136 (1977)

    CAS  Google Scholar 

  32. Levene, R.J., Powell, D.B., Steele, D.: The vibrational spectrum of ortho-phosphoric acid in some non-aqueous solvents. Spectrochim. Acta 22, 2033–2038 (1966)

    Article  CAS  Google Scholar 

  33. Marshall, W.L., Begun, G.M.: Raman spectroscopy of aqueous phosphate solutions at temperatures up to 450 °C. Two liquid phases, supercritical fluids, and pyro- to ortho-phosphate conversions. J. Chem. Soc. Faraday Trans. 2(85), 1963–1978 (1989)

    Google Scholar 

  34. Rudolph, W.: Vibrational and 31-P NMR studies of molten phosphoric acid and highly concentrated aqueous solutions. In: Hussey, Ch.L., Newman, D.S., Mamantov, G., Ito, Y. (eds.) Proceedings of the Ninth International Symposium on Molten Salts. Physical Electrochemistry Proceedings, vol. 94-13, pp. 313–317. The Electrochemical Society, Pennington (1994)

    Google Scholar 

  35. Rudolph, W.: Vibrational and 31-P NMR studies of concentrated aqueous solutions. Unpublished material, Memorial University (1998)

  36. Cherif, M., Mgaidi, A., Ammar, N., Vallée, G., Fürst, W.: A new investigation of aqueous orthophosphoric acid speciation using Raman spectroscopy. J. Solution Chem. 29, 255–269 (2000)

    Article  CAS  Google Scholar 

  37. Helgeson, H.C., Kirkham, D.H.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; II. Debye–Hückel parameters for activity coefficients and relative partial molal properties. Am. J. Sci. 274, 1199–1261 (1974)

    Article  CAS  Google Scholar 

  38. Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Sjöberg, S., Wanner, H.: Chemical speciation of environmentally significant heavy metals with inorganic ligands (IUPAC technical report). Pure Appl. Chem. 77, 739–800 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. G. Irmer for the use of his Raman spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram W. Rudolph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolph, W.W. Raman-Spectroscopic Measurements of the First Dissociation Constant of Aqueous Phosphoric Acid Solution from 5 to 301 °C. J Solution Chem 41, 630–645 (2012). https://doi.org/10.1007/s10953-012-9825-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9825-4

Keywords

Navigation