Skip to main content
Log in

The Statistical Description of Precision Conductivity Data for Aqueous Sodium Chloride

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Published precise data for NaCl in the temperature range 0–50 °C were assembled, corrected to current standards and analyzed by weighted least-squares regression. There was a notable paucity of data at 0 °C. Data were analyzed as specific conductivity to avoid violation of the statistical independence assumption. The regression model was a polynomial in \(\sqrt{c}\), with an added transcendental term. Powers of \(\sqrt{c}\) were added to published equations to extend the range of c fitted. Temperature dependency of the coefficients was individually modeled by cubic functions in the Celsius temperature. Criteria for an acceptable model included lack of bias, similarity to published theoretical equations, and extrapolation to infinite dilution consistent with literature values. The predictive equation chosen was of the form:

$$\kappa = \varLambda _{0}c - Sc^{3/2} + Ec^{2}\ln c + J_{1}c^{2} + J_{2}c^{5/2} + J_{3}c^{3} + J_{4}c^{7/2} + J_{5}c^{4} + J_{6}c^{9/2} $$

and fit the data without bias but with high precision (±0.33 μS⋅cm−1) for the full range of published concentrations (up to 5.4 mol⋅L−1), over the temperature range 0–50 °C, something not previously achieved. All coefficients but J 5 and J 6 were temperature dependent; the latter terms were required for an unbiased fit at higher concentrations (>1 mol⋅L−1). Solution of the equation for infinite dilution matched published values closely. The use of separate empirical temperature dependency for the equation coefficients may provide an independent means of validating theoretical treatments of conductivity data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The IPTS of 1968 is the scale used for the most recent measurements and differs little from the more recent revision of 1990 in the applicable temperature range. It was not thought worthwhile to apply this further correction.

References

  1. Jolly, I., Morton, R., Walker, G., Robinson, G., Jones, H., Nandakumar, N., Nathan, R., Clarke, R., McNeill, V.: Stream salinity trends in catchments of the Murray–Darling Basin. CSIRO technical report 14/97, CSIRO Land and Water, Canberra, ACT, Australia (1997)

  2. Shedlovsky, T.: An equation for electrolytic conductance. J. Am. Chem. Soc. 54, 1405–1411 (1932)

    Article  CAS  Google Scholar 

  3. Chandra, A., Bagchi, B.: Ion conductance in electrolyte solutions. J. Chem. Phys. 110, 10024–10034 (1999)

    Article  CAS  Google Scholar 

  4. Janz, G.J., Tomkins, R.P.T.: Conductance cell calibrations: current practices. J. Electrochem. Soc. 124, 55C–59C (1977)

    Article  CAS  Google Scholar 

  5. Pitts, E.: An extension of the theory of the conductivity and viscosity of electrolyte solutions. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 217, 43–70 (1953)

    Article  CAS  Google Scholar 

  6. Daniel, C., Wood, F.S.: Fitting Equations to Data. Wiley, New York (1980)

    Google Scholar 

  7. Snedecor, G.W., Cochran, W.G.: Statistical Methods, 7th edn. University of Iowa Press, Ames (1980)

    Google Scholar 

  8. Kay, R.L.: An application of the Fuoss–Onsager conductance theory to the alkali halides in several solvents. J. Am. Chem. Soc. 82, 2099–2105 (1960)

    Article  CAS  Google Scholar 

  9. Fuoss, R.M., Onsager, L., Skinner, J.F.: The conductance of symmetrical electrolytes. V. The conductance equation. J. Phys. Chem. 69, 2581–2594 (1965)

    Article  CAS  Google Scholar 

  10. Wells, C.B.: Electrolytic conductivity of soil solution and waters: conversions from conductance measurements at field temperatures. Technical paper No. 37. CSIRO, Division of Soils, Melbourne, VIC, Australia (1978)

  11. Jones, G., Bradshaw, B.C.: The measurement of the conductance of electrolytes. V. A redetermination of the conductance of standard potassium chloride solutions in absolute units. J. Am. Chem. Soc. 55, 1780–1800 (1933)

    Article  CAS  Google Scholar 

  12. Brescia, F., LaMer, V.K., Nachod, F.C.: The temperature dependence of the dissociation constant of deuteroacetic acid. J. Am. Chem. Soc. 62, 614–617 (1940)

    Article  CAS  Google Scholar 

  13. Chittum, J.P., La Mer, V.K.: Conductance of salts in H2O–D2O mixtures. J. Am. Chem. Soc. 59, 2425–2430 (1937)

    Article  CAS  Google Scholar 

  14. Johnson, C.R., Hulett, G.A.: Specific conductance of some dilute solutions at 0 and 25 °C. J. Am. Chem. Soc. 57, 256–258 (1935)

    Article  CAS  Google Scholar 

  15. MacInnes, D.A., Shedlovsky, T., Longsworth, L.G.: The limiting equivalent conductances of several univalent ions in water at 25 °C. J. Am. Chem. Soc. 54, 2758–2762 (1932)

    Article  CAS  Google Scholar 

  16. Nickels, L., Allmand, A.J.: The electrical conductivities and viscosities at 25 °C of solutions of potassium, sodium, and lithium chlorides in water and in one-tenth molar hydrochloric acid. J. Phys. Chem. 41, 861–872 (1937)

    Article  CAS  Google Scholar 

  17. Ruby, C.E., Kawai, J.: The densities, equivalent conductances and relative viscosities at 25 °C, of solutions of hydrochloric acid, potassium chloride and sodium chloride, and of their binary and ternary mixtures of constant chloride-ion-constituent content. J. Am. Chem. Soc. 48, 1119–1128 (1926)

    Article  CAS  Google Scholar 

  18. Saxton, B., Langer, T.W.: The ionization constant of monochloroacetic acid, at 25 °C, from conductance measurements. J. Am. Chem. Soc. 55, 3638–3645 (1933)

    Article  CAS  Google Scholar 

  19. Scatchard, G., Prentiss, S.S.: The freezing points of aqueous solutions. IV. Potassium, sodium and lithium chlorides and bromides. J. Am. Chem. Soc. 55, 4355–4362 (1933)

    Article  CAS  Google Scholar 

  20. Shedlovsky, T.: The electrolytic conductivity of some uni-univalent electrolytes in water at 25 °C. J. Am. Chem. Soc. 54, 1411–1428 (1932)

    Article  CAS  Google Scholar 

  21. Smith, A.K., Gortner, R.A.: The electrical conductivity of mixed salt solutions. J. Phys. Chem. 37, 79–86 (1933)

    Article  CAS  Google Scholar 

  22. Van Rysselberghe, P., Grinnell, S.W., Carlson, J.M.: Conductivities of concentrated binary mixtures of electrolytes with a common anion and at least one ion of charge two. J. Am. Chem. Soc. 59, 336–339 (1937)

    Article  Google Scholar 

  23. Parker, H.C., Parker, E.W.: The calibration of cells for conductance measurements. III. Absolute measurements on the specific conductance of certain potassium chloride solutions. J. Am. Chem. Soc. 46, 312–335 (1924)

    Article  CAS  Google Scholar 

  24. Wu, Y.C., Koch, W.F., Hamer, W.J., Kay, R.L.: Review of electrolytic conductance standards. J. Solution Chem. 16, 985–997 (1987)

    Article  CAS  Google Scholar 

  25. Lobo, V.M.M., Quaresma, J.L.: Handbook of Electrolyte Solutions, Part B. Elsevier, Amsterdam (1989)

    Google Scholar 

  26. Stearn, A.E.: Ionic equilibria of strong electrolytes. J. Am. Chem. Soc. 44, 670–678 (1922)

    Article  CAS  Google Scholar 

  27. Van Rysselberghe, P., Nutting, L.: Conductivities of one-molal mixtures of alkali halides and nitrates. J. Am. Chem. Soc. 59, 333–336 (1937)

    Article  Google Scholar 

  28. Suhrmann, R., Wiedersich, I.: Uber die beeinflussung der H+-ionenleitfahigkeit durch fremdionen in waßriger losung. Z. Anorg. Allg. Chem. 272, 167–181 (1953)

    Article  CAS  Google Scholar 

  29. Singh, D., Bahadur, L., Ramanamurti, M.V.: Conductance studies in amide–water mixtures. II. Sodium salts in N,N-dimethylformamide–water mixtures at 35 °C. J. Solution Chem. 6, 703–715 (1977)

    Article  CAS  Google Scholar 

  30. Shedlovsky, T., Brown, A.S., MacInnes, D.A.: The conductance of aqueous electrolytes. Trans. Electrochem. Soc. 66, 165–178 (1934)

    Article  Google Scholar 

  31. Bremner, R.W., Thompson, T.G., Utterback, C.L.: Electrical conductances of pure and mixed salt solutions in the temperature range 0 to 25 °C. J. Am. Chem. Soc. 61, 1219–1223 (1939)

    Article  CAS  Google Scholar 

  32. Gunning, H.E., Gordon, A.R.: The conductance and ionic mobilities for aqueous solutions of potassium and sodium chloride at temperatures from 15 °C to 45 °C. J. Chem. Phys. 10, 126–131 (1942)

    Article  CAS  Google Scholar 

  33. Benson, G.C., Gordon, A.R.: A reinvestigation of the conductance of aqueous solutions of potassium chloride, sodium chloride, and potassium bromide at temperatures from 15 °C to 45 °C. J. Chem. Phys. 13, 473–474 (1945)

    Article  CAS  Google Scholar 

  34. Chambers, J.F., Stokes, J.M., Stokes, R.H.: Conductances of concentrated aqueous sodium and potassium chloride solutions at 25 °C. J. Phys. Chem. 60, 985–986 (1956)

    Article  CAS  Google Scholar 

  35. Suryanarayana, C.V., Venkatesan, V.K.: Acta Chim. Acad. Sci. Hung. 17, 327 (1958). From Ref. [25], p. 1677

    CAS  Google Scholar 

  36. Chambers, J.F.: The conductance of concentrated aqueous solutions of potassium iodide at 25 °C and of potassium and sodium chlorides at 50 °C. J. Phys. Chem. 62, 1136–1138 (1958)

    Article  CAS  Google Scholar 

  37. Kunze, R.W., Fuoss, R.M.: Conductance of the alkali halides. V. Sodium chloride in dioxane–water mixtures. J. Phys. Chem. 67, 911–913 (1963)

    Article  CAS  Google Scholar 

  38. Swain, C.G., Evans, D.F.: Conductance of ions in light and heavy water at 25 °C. J. Am. Chem. Soc. 88, 383–390 (1966)

    Article  CAS  Google Scholar 

  39. Goffredi, M., Shedlovsky, T.: Studies of electrolytic conductance in alcohol–water mixtures. III. Sodium chloride in 1-propanol–water mixtures at 15, 25, and 35 °C. J. Phys. Chem. 71, 2176–2181 (1967)

    Article  CAS  Google Scholar 

  40. Chiu, Y.-C., Fuoss, R.M.: Conductance of the alkali halides. XII. Sodium and potassium chlorides in water at 25 °C. J. Phys. Chem. 72, 4123–4129 (1968)

    Article  CAS  Google Scholar 

  41. Behret, H., Schmithals, F.Z.: Conductivity measurements with concentrated solutions of alkali chlorides and nitrates. Naturforsch. A 30, 1497–1498 (1975). From Ref. [25], p. 1656

    Google Scholar 

  42. Arevalo, A., Vivo, A., Esteso, M.A., Llorente, M.L.: Electrolytic conductivity in water–ethanol solutions. 2. Limiting conductivity of NaCl at 25 °C. An. Quim. 73, 195–199 (1977). From Ref. [25], p. 1657

    CAS  Google Scholar 

  43. Fisher, F.H., Fox, A.P.: Conductance of aqueous NaCl solutions at pressures up to 2000 atm. J. Solution Chem. 10, 871–879 (1981)

    Article  CAS  Google Scholar 

  44. Bianchi, H., Corti, H.R., Fernandez-Prini, R.: The conductivity of concentrated aqueous mixtures of NaCl and MgCl2 at 25 °C. J. Solution Chem. 18, 485–491 (1989)

    Article  CAS  Google Scholar 

  45. Bester-Rogac, M., Neueder, R., Barthel, J.: Conductivity of sodium chloride in water + 1,4-dioxane mixtures at temperatures from 5 to 35 °C. I. Dilute solutions. J. Solution Chem. 28, 1071–1086 (1999)

    Article  CAS  Google Scholar 

  46. Bester-Rogac, M., Neueder, R., Barthel, J.: Conductivity of sodium chloride in water + 1,4-dioxane mixtures at temperatures from 5 to 35 °C. II. Concentrated solutions. J. Solution Chem. 29, 51–61 (2000)

    Article  CAS  Google Scholar 

  47. Fernandez-Prini, R.: Conductance of electrolyte solutions. A modified expression for its concentration dependence. Trans. Faraday Soc. 65, 3311–3313 (1969)

    Article  CAS  Google Scholar 

  48. Fuoss, R.M., Hsia, K.-L.: Association of 1-1 salts in water. Proc. Natl. Acad. Sci. USA 57, 1550–1557 (1967)

    Article  CAS  Google Scholar 

  49. Fuoss, R.M., Onsager, L.: Conductance of unassociated electrolytes. J. Phys. Chem. 61, 668–683 (1957)

    Article  CAS  Google Scholar 

  50. Sandig, R., Feistel, R.: The clogc contribution to the electrolyte conductance and Onsager’s reciprocal relation. J. Solution Chem. 8, 411–426 (1979)

    Article  Google Scholar 

  51. Patek, J., Hruby, J., Klomfar, J., Souckova, M.: Reference correlations for thermophysical properties of liquid water at 0.1 MPa. J. Phys. Chem. Ref. Data 38, 21–29 (2009)

    Article  CAS  Google Scholar 

  52. Lind, J.E., Zwolenik, J.J., Fuoss, R.M.: Calibration of conductance cells at 25 °C with aqueous solutions of potassium chloride. J. Am. Chem. Soc. 81, 1557–1559 (1959)

    Article  CAS  Google Scholar 

  53. Janz, G.J., Singer, S.K.: Copenhagen standard sea water: conductivity and salinity. J. Solution Chem. 4, 995–1003 (1975)

    Article  CAS  Google Scholar 

  54. Fernandez-Prini, R., Prue, J.E.: A comparison of conductance equations for unassociated electrolytes. Z. Phys. Chem. 228, 373–379 (1965)

    Google Scholar 

  55. Pitts, E., Tabor, B.E., Daly, J.: Concentration dependence of electrolyte conductance, Part 2. Comparison of experimental data with the Fuoss–Onsager and Pitts treatments. Trans. Faraday Soc. 66, 693–707 (1970)

    Article  CAS  Google Scholar 

  56. Fuoss, R.M.: Conductance–concentration function for associated symmetrical electrolytes. J. Phys. Chem. 79, 525–540 (1975)

    Article  CAS  Google Scholar 

  57. Ebeling, W., Grigo, M.: Mean spherical approximation-mass action law theory of equilibrium and conductance in ionic solutions. J. Solution Chem. 11, 151–167 (1982)

    Article  CAS  Google Scholar 

  58. Bernard, O., Kunz, W., Turq, P., Blum, L.: Conductance in electrolyte solutions using the mean spherical approximation. J. Phys. Chem. 96, 3833–3840 (1992)

    Article  CAS  Google Scholar 

  59. Robinson, R.A., Stokes, R.H.: The variation of equivalent conductance with concentration and temperature. J. Am. Chem. Soc. 76, 1991–1994 (1954)

    Article  CAS  Google Scholar 

  60. McKee, C.B.: An accurate equation for the electrolytic conductivity of potassium chloride solutions. J. Solution Chem. 38, 1155–1172 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Wadsworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wadsworth, J.C. The Statistical Description of Precision Conductivity Data for Aqueous Sodium Chloride. J Solution Chem 41, 715–729 (2012). https://doi.org/10.1007/s10953-012-9823-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9823-6

Keywords

Navigation