Skip to main content

Advertisement

Log in

Ruthenium(III) Catalyzed Oxidative Degradation of Amitriptyline-A Tricyclic Antidepressant Drug by Permanganate in Aqueous Acidic Medium

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The oxidation of amitriptyline by potassium permanganate has been investigated spectrophotometrically in the presence of ruthenium(III) as catalyst in aqueous acidic medium at a constant ionic strength of 0.20 mol⋅dm−3. The stoichiometry was found to be 1:1 in terms of the mole ratio of amitriptyline and permanganate ions consumed. The order of the reaction with respect to manganese(VII) and ruthenium(III) concentration was unity while the order with respect to amitriptyline was less than unity over the concentration range studied. The rate increased with an increase in acid concentration. The reaction rates revealed that the Ru(III) catalyzed reaction was about eight-fold faster than the uncatalyzed reaction. The oxidation products were identified by spectral analysis. A tentative mechanism consistent with the kinetics has been proposed. The reaction constants involved in the different steps of the reaction mechanism were calculated. Kinetic experiments suggest that HMnO4 is the reactive permanganate species and [Ru(H2O)6]3+ is the reactive Ru(III) species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bendtsen, L., Jensen, R., Olesen, J.: A non-selective (amitriptyline), but not a selective (citalopram), serotonin reuptake inhibitor is effective in the prophylactic treatment of chronic tension-type headache. J. Neurol., Neurosur. Psychiatry 61, 285–290 (1996)

    Article  CAS  Google Scholar 

  2. Ziegler, D., Hurwitz, A., Hassanein, R., Kodanaz, H., Preskorn, S., Mason, J.: Migraine prophylaxis: a comparison of propranolol and amitriptyline. Arch. Neurol. 44, 486–489 (1987)

    CAS  Google Scholar 

  3. Otaka, M., Jin, M., Odashima, M., Matsuhashi, T., Wada, I., Horikawa, Y., Komatsu, K., Oyake, O.R.J., Hatakeyama, N., Watanabe, S.N.: New strategy of therapy for functional dyspepsia using famotidine, mosapride and amitriptyline. Aliment. Pharmacol. Ther. 21, 42–46 (2005)

    Article  CAS  Google Scholar 

  4. Hiremath, G.A., Timmanagoudar, P.L., Nandibewoor, S.T.: Kinetics of oxidation of thallium(I) by permanganate in aqueous hydrochloric acid medium using stopped flow technique. Transit. Met. Chem. 21, 560–568 (1996)

    CAS  Google Scholar 

  5. Day, M.C., Selbin, J.: Theoretical Inorganic Chemistry, pp. 226–233. Reinhold, New York (1964)

    Google Scholar 

  6. Caron, P., Dugger, R.W., Ruggeri, J.A., Brown Ripin, D.H.: Large scale oxidations in the pharmaceutical industry. Chem. Rev. 106, 2943–2989 (2006)

    Article  CAS  Google Scholar 

  7. Das, A.K.: Kinetic and mechanistic aspects of metal ion catalysis in cerium(IV) oxidation. Coord. Chem. Rev. 213, 307–325 (2001)

    Article  CAS  Google Scholar 

  8. Shivananda, K.N., Lakshmi, B., Jagdeesh, R.V., Puttaswamy, Mahendra, K.N.: Mechanistic studies on the Ru(III)-catalyzed oxidation of some aromatic primary diamines by chloramines-T in hydrochloric acid medium: a kinetic approach. Appl. Catal. A, Gen. 326, 202–212 (2007)

    Article  CAS  Google Scholar 

  9. Tandon, P.K., Mehrotra, A., Shrivastava, M., Dhusia, M., Singh, S.B.: Ru(III) catalysis in the reaction of hexacynoferrate(III) and iodide ions in perchloric acid medium. Transit. Met. Chem. 32, 991–999 (2007)

    Article  Google Scholar 

  10. Singh, A.K., Srivastava, S., Srivastava, J., Srivastava, R., Singh, P.: Studies in kinetics and mechanism of oxidation of d-glucose and d-fructose by alkaline solution of potassium iodate in the presence of Ru(III) as homogeneous catalyst. J. Mol. Catal. A Chem. 278, 72–81 (2007)

    Article  CAS  Google Scholar 

  11. Lamani, S.D., Savanur, A.P., Nandibewoor, S.T.: Oxidation of tricyclic antidepressant agent, amitriptyline, by permanganate in sulphuric acid medium: kinetic and mechanistic approach. Ind. Eng. Chem. Res. (2010) (Communicated)

  12. Hoffsommer, R.D., Taub, D., Wendler, N.L.: The homoallylic rearrangement in the synthesis of amitriptyline and related systems. J. Org. Chem. 27, 4134–4137 (1962)

    Article  CAS  Google Scholar 

  13. Misiuk, W., Tarasiewicz, M.: Application of thiocyanate complex of titanium(IV) to the extractive spectrophotometric determination of amitriptyline hydrochloride. Anal. Lett. 31, 1197–1207 (1998)

    CAS  Google Scholar 

  14. Reddy, C.S., Vijaya Kumar, T.: Kinetic and mechanistic study of ruthenium(III) catalysed and uncatalysed oxidation of oxalic acid by acid bromate. Indian J. Chem. A 34, 615–620 (1995)

    Google Scholar 

  15. Kamble, D.L., Chougale, R.B., Nandibewoor, S.T.: Kinetics and mechanism of uncatalysed and ruthenium(III) catalysed oxidation of allyl alcohol by N-bromosuccinimide in aqueous alkaline medium. Indian J. Chem. A 35, 865–869 (1996)

    Google Scholar 

  16. Jeffery, G.H., Bassett, J., Mendham, J., Denny, R.C.: Vogel’s Text Book of Quantitative Chemical Analysis, 5th edn., p. 370. ELBS Longman, Essex (1996)

    Google Scholar 

  17. Timmanagoudar, P.L., Hiremath, G.A., Nandibewoor, S.T.: Permanganate oxidation of thallium(I) in sulphuric acid: a kinetic study by stopped flow technique. Pol. J. Chem. 70, 1459–1467 (1996)

    CAS  Google Scholar 

  18. Vogel, A.I.: Text Book of Macro and Semi Micro Qualitative Inorganic Analysis, 5th edn., p. 268. Longman, New York (1979)

    Google Scholar 

  19. Tuwar, S.M., Morab, V.A., Nandibewoor, S.T.: Osmium(VIII)/Palladium(II) catalysis of cerium(IV) oxidation of allyl alcohol in aqueous acid. Transit. Met. Chem. 16, 430–434 (1991)

    Article  CAS  Google Scholar 

  20. Jagdeesh, R.V., Puttaswamy: Os(VIII)-catalyzed and uncatalyzed oxidation of biotin by chloramines-T in alkaline medium: comparative mechanistic aspects and kinetic modeling. J. Phys. Org. Chem. 21, 844–848 (2008)

    Article  Google Scholar 

  21. Moelwyn-Hughes, E.A.: Kinetics of Reaction in Solutions, p. 297. Oxford Univ. Press, London (1947)

    Google Scholar 

  22. Chimatadar, S.A., Basavaraj, T., Nandibewoor, S.T.: Ruthenium(III) mediated cerium(IV) oxidation of thallium(I) in aqueous sulfuric acid—a kinetic and mechanistic study. Inorg. React. Mech. 4, 209–219 (2002)

    Article  CAS  Google Scholar 

  23. Panda, H.P., Sahu, B.D.: Kinetics and mechanism of Ru(III) catalyzed oxidation of substituted cinnamic acids by cerium (IV). Indian J. Chem. A 28, 323–324 (1989)

    Google Scholar 

  24. Zahedi, M., Bahrami, H.: Kinetics and mechanism of the autocatalytic oxidation of L-asparagine in a moderately concentrated sulfuric acid medium. Kinet. Catal. 45, 351–358 (2004)

    Article  CAS  Google Scholar 

  25. Vereesh, T.M., Patil, R.K., Nandibewoor, S.T.: Thermodynamic quantities for the oxidation of ranitidine by diperiodatocuprate(III) in aqueous alkaline medium. Transit. Met. Chem. 33, 981–988 (2008)

    Article  Google Scholar 

  26. Savanur, A.P., Rajeshwari, H.V., Nandibewoor, S.T., Chimatadar, S.A.: Ruthenium(III) mediated oxidation of glycerol by cerium(IV) in aqueous sulfuric acid medium—a kinetic and mechanistic study. Main Group Chem. 8, 283–298 (2009)

    Article  CAS  Google Scholar 

  27. Rangappa, K.S., Raghavendra, M.P., Mahadevappa, D.S., Channegouda, D.: Sodium N-chlorobenzenesulfonamide as a selective oxidant for hexosamines in alkaline medium: a kinetic and mechanistic study. J. Org. Chem. 63, 531–536 (1998)

    Article  CAS  Google Scholar 

  28. Amis, E.S.: Solvent Effects on Reaction Rates and Mechanisms. Academic Press, New York (1996)

    Google Scholar 

  29. Nandibewoor, S.T., Morab, V.A.: Chromium(III) catalysed oxidation of antimony(III) by alkaline hexacyanoferrate(III) and analysis of chromium(III) in micro amounts by a kinetic method. J. Chem. Soc. Dalton Trans. 483–488 (1995)

  30. Weissberger, A.: Investigations of Rates and Mechanism of Reactions in Techniques of Chemistry, vol. IV, p. 421. Wiley, New York (1974)

    Google Scholar 

  31. Martinez, M., Pitarque, M.A., Eldik, R.V.: Outer-sphere redox reactions of [CoIII(NH3)5(H x P Y O Z )](n−3)-complexes. A temperature and pressure-dependance of kinetic study on the influence of the phosphorous oxoanions. J. Chem. Soc. Dalton Trans. 2665–2673 (1996)

  32. Farokhi, S.A., Nandibewoor, S.T.: Kinetic, mechanistic and spectral studies for the oxidation of sulfanilic acid by alkaline hexacyanoferrate(III). Tetrahedron 59, 7595–7602 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanappa T. Nandibewoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbar, J.C., Lamani, S.D. & Nandibewoor, S.T. Ruthenium(III) Catalyzed Oxidative Degradation of Amitriptyline-A Tricyclic Antidepressant Drug by Permanganate in Aqueous Acidic Medium. J Solution Chem 40, 502–520 (2011). https://doi.org/10.1007/s10953-011-9655-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9655-9

Keywords

Navigation