Skip to main content
Log in

Permanganate oxidative products of moxifloxacin, a fluoroquinolone drug: a mechanistic approach

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of moxifloxacin (MOX) was studied spectrophotometrically by a well-recognized analytical reagent, permanganate (Mn(VII), in aqueous alkaline medium at a constant ionic strength. The reaction was first order in [Mn(VII)] and less than unit order both in [MOX] and [alkali]. Retarding effect on rate of reaction was observed with an increase in ionic strength. The effect of dielectric constant of the medium was also studied. The multiple m/z values of ESI–MS spectra prove the existence of various oxidative products of MOX. The main product was identified as 1-cyclopropyl-6-fluoro-1,4-dihydro-7-(octahydro-2-oxopyrrolo[3,4-b] pyridin-6-yl)-8-methoxy-4-oxoquinoline-3-carboxylic acid. The other three oxidative products from MOX in the present study are similar to the oxidative products of other fluoroquinolones oxidations. However, the abnormally high values of m/z could be assigned to the permanganate complexes of the products, which are unusual in the non-metallic oxidation of MOX. A composite mechanism involving the monohydropermangante as the reactive species of the oxidant has been proposed. Activation parameters and thermodynamic parameters are calculated and the reaction constants involved in the different steps of the mechanisms are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

References

  1. A. Carrington, M.C.R. Symons, Chem. Rev. 63, 443 (1963)

    Article  CAS  Google Scholar 

  2. M. Jaky, L.I. Simandi, J. Chem. Soc. Perkin Trans. 2, 939 (1976)

    Article  Google Scholar 

  3. P. Nath, K.K. Banerji, Indian J. Chem. 14, 660 (1976)

    Google Scholar 

  4. M. Jaky, J. Szammer, E. Simon-Trompler, J. Chem. Soc. Perkin Trans. 2, 1597 (2000)

    Article  Google Scholar 

  5. P.K. Sen, P.R. Samaddar, K. Das, Transit. Met. Chem. 30, 907 (2005)

    Article  CAS  Google Scholar 

  6. K. Mohnot, P.K. Sharma, K.K. Banerji, J. Org. Chem. 61, 1310 (1996)

    Article  CAS  Google Scholar 

  7. S.A. Khan, P. Kumar, K. Saleem, Z. Khan, Colloids Surf. A: Physicochem. Eng. Asp. 302, 102 (2007)

    Article  CAS  Google Scholar 

  8. E. Block, R. DeOrazio, M. Thiruvazhi, J. Org. Chem. 59, 2273 (1994)

    Article  CAS  Google Scholar 

  9. N. Xie, R.A. Binstead, E. Block, W.D. Chandler, D.G. Lee, T.J. Meyer, M. Thiruvazhi, J. Org. Chem. 65, 1008 (2000)

    Article  CAS  Google Scholar 

  10. A.R. Hajipour, S.E. Mallakpour, H. Adibi, Sulfur Lett. 25, 155 (2002)

    Article  CAS  Google Scholar 

  11. P. Kumar, Z. Khan, Colloid Polym. Sci. 284, 1155 (2006)

    Article  CAS  Google Scholar 

  12. N.N. Halligudi, S.M. Desai, S.T. Nandibewoor, Transit. Met. Chem. 26, 28 (2001)

    Article  CAS  Google Scholar 

  13. R.G. Panari, R.B. Chougale, S.T. Nandibewoor, Polish J. Chem. 72, 99 (1998)

    CAS  Google Scholar 

  14. P.B. Addis, A.S. Csallany, S.E. Kindom, Some lipid oxidation products as xenobiotics, in Xenobiotics in Foods and Feeds, ed. by J.W. Finley, D.E. Schwass (American Chemical Society, Washington, DC, 1983), p. 85

  15. J.R. Hanson, P.B. Hitchcock, S.J. Nagaratnam, J. Chem. Res. Synop. 22 (1999)

  16. S. Dash, S. Patel, B.K. Mishra, Tetrahedron 65, 707 (2009)

    Article  CAS  Google Scholar 

  17. L.I. Simandi, M. Jaky, Z.A. Schelley, J. Am. Chem. Soc. 107, 4220 (1985)

    Article  CAS  Google Scholar 

  18. P.L. Timmanagoudar, G.A. Hiremath, S.T. Nandibewoor, Transit. Met. Chem. 22, 193 (1997)

    Article  CAS  Google Scholar 

  19. U.S. Environmental Protection Agency. In Situ Remediation Technology: In Situ Chemical Oxidation EPA542-R-98-008; Office of Solid Waste and Emergency Response (U.S. EPA, Washington, DC, 1998)

  20. R.L. Siegrist, M.A. Urynowicz, O.R. West, M.L. Crimi, K.S. Lowe, Principles and Practices of In Situ Chemical Oxidation Using Permanganate (Battelle, Columbus, OH, 2001)

    Google Scholar 

  21. Y. Eugeneyan, F.W. Schwartz, Environ. Sci. Technol. 34, 2535 (2000)

    Article  Google Scholar 

  22. V.T. Andriole, The quinolones: Prospects, in The quinolones, 3rd edn., ed. by V.T. Andriole (Academic Press, London, 2000), p. 487

    Google Scholar 

  23. J.O. Maryadele, The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals, 14th ed. (Merck Research Laboratories, Division of Merck and Co., Inc. Whitehouse Station, New Jersey, 2001), pp. 1125

  24. British Pharmacopoeia, The Stationary Office Medicinal, Pharmaceutical Substances, London 2, 1401 (2009)

    Google Scholar 

  25. V.T. Andriole, Clin. Infect. Dis. 41, 113 (2005)

    Article  Google Scholar 

  26. J.J. Champoux, Annu. Rev. Biochem. 70, 369 (2001)

    Article  CAS  Google Scholar 

  27. USP DI., Vol. I, 21st edn. (Micromedex, New York, NY, 2001), pp. 1528

  28. E. Miyazaki, M. Miyazaki, J.M. Chen, R.E. Chaisson, W.R. Bishai, Moxifloxacin (BAY12-8039). Antimicrob. Agents Chemother. 43, 85 (1999)

    Article  CAS  Google Scholar 

  29. U. Hubicka, B. Zuromska-witek, J. Krzek, M. Walczak, M. Zylewski, Acta Poloniae Pharmaceut. Drug Res. 69, 821 (2012)

    CAS  Google Scholar 

  30. E.M. Golet, A.C. Alder, W. Giger, Environ. Sci. Technol. 36, 3645 (2002)

    Article  CAS  Google Scholar 

  31. D.W. Kolpin, M. Skopec, M.T. Meyer, E.T. Furlong, S.D. Zaugg, Sci. Total Environ. 328, 119 (2004)

    Article  CAS  Google Scholar 

  32. D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton, Environ. Sci. Technol. 36, 1202 (2002)

    Article  CAS  Google Scholar 

  33. N.M. Vieno, H. Harkki, T. Tuhkanen, L. Kronberg, Environ. Sci. Technol. 41, 5077 (2007)

    Article  CAS  Google Scholar 

  34. W. Xu, G. Zhang, X. Li, S. Zou, P. Li, Z. Hu, J. Li, Water Res. 41, 4526 (2007)

    Article  CAS  Google Scholar 

  35. F. Tamtam, F. Mercier, B. Le Bot, J. Eurin, Q.T. Dinh, M. Clement, M. Chevreuil, Sci. Total Environ. 393, 84 (2008)

    Article  CAS  Google Scholar 

  36. J.E. Renew, C.H. Huang, J. Chromatogr. A 1042, 113 (2004)

    Article  CAS  Google Scholar 

  37. H. Nakata, K. Kannan, P.D. Jones, J.P. Giesy, Chemosphere 58, 759 (2005)

    Article  CAS  Google Scholar 

  38. S. Castiglioni, R. Bagnati, R. Fanelli, F. Pomati, D. Calamari, E. Zuccato, Environ. Sci. Technol. 40, 357 (2006)

    Article  CAS  Google Scholar 

  39. K.G. Karthikeyan, M.T. Meyer, Sci. Total Environ. 361, 196 (2006)

    Article  CAS  Google Scholar 

  40. M. Seifrtova, A. Pena, C.M. Lino, P. Solich, Anal. Bioanal. Chem. 391, 799 (2008)

    Article  CAS  Google Scholar 

  41. B. Wiedemann, H. Grimm, Susceptibility to antibiotics: species incidence and trends. in Antibiotics in Laboratory Medicine, ed. by V. Lorian (Williams and Wilkins, Baltimore, MD, 1996), pp. 900

  42. P. Wang, H. Yi-Liang, Ching-Hua, Water Res. 44, 5989 (2010)

    Article  CAS  Google Scholar 

  43. H. Zhang, C.H. Huang, The 3rd International Conference on Pharmaceuticals and Endocrine Disrupting Chemicals in Water (National Ground Water Association, Minneapolis, MN, 2003), pp. 19

  44. H. Urszula, J. Krzek, B. Zuromska, M. Walczak, M. Zylewski, D. Pawlowski, Photochem. Photobiol. Sci. 11, 351 (2012)

    Article  Google Scholar 

  45. R.E.L. Sheikh, A.S. Amin, A.A. Gouda, A.G. Youssef, Pharm. Anal. Acta. 240, 2153 (2013). doi:10.4172/2153-2435.1000240

  46. W.F. El-Hawary, Kh Faisal, Al-Gethami. Eur. Chem. Bull. 2, 22 (2013)

    CAS  Google Scholar 

  47. A.I. Vogel, A text book of quantitative inorganic analysis, 4th edn. (ELBS, New York, 1978), p. 330

    Google Scholar 

  48. G.H. Jeffery, J. Bassett, J. Mendham, R.C. Denney, Vogel’s Text Book of Quantitative Chemical Analysis, 5th ed. (ELBS, Longman, Essex, 1996), pp. 371

  49. R.G. Panari, R.B. Chougale, S.T. Nandibewoor, Oxidn. Commun. 21, 503 (1998)

    CAS  Google Scholar 

  50. D.C. Bilehal, R.M. Kulkarni, S.T. Nandibewoor, Can. J. Chem. 79, 1926 (2001)

    Article  CAS  Google Scholar 

  51. G.H. Hugar, S.T. Nandibewoor, Transit. Met. Chem. 19, 215 (1994)

    Article  CAS  Google Scholar 

  52. P. Naik, S.A. Chimatadar, S.T. Nandibewoor, Ind. Eng. Chem. Res. 48, 2548 (2009)

    Article  CAS  Google Scholar 

  53. M. Jaky, I.V. Kozhevnikov, E. Hoft, Int. J. Chem. Kinet. 24, 1055 (1992)

    Article  CAS  Google Scholar 

  54. K.A. Thabaj, S.D. Kulkarni, S.A. Chimatadar, S.T. Nandibewoor, Polyhedrone 26, 4877 (2007)

  55. J. Sharma, D.K. Majumdar, Int. J. Pharm. Pharm. Sci. 4, 605 (2012)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Principal, Karnatak Science College, Dharwad, Karnataka, India for providing the necessary facilities to carry out this work. They also thank the Raptakos Brett and Co., Microlabs Ltd. KLAB, Mumbai, India for providing the free sample of Moxifloxacin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh M. Tuwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badi, S.S., Tuwar, S.M. Permanganate oxidative products of moxifloxacin, a fluoroquinolone drug: a mechanistic approach. Res Chem Intermed 41, 7827–7845 (2015). https://doi.org/10.1007/s11164-014-1862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1862-8

Keywords

Navigation