Skip to main content
Log in

On the Intrinsic Volumes of Ions in Aqueous Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Various methods that have been proposed in the literature for the estimation of the intrinsic volumes of electrolytes in aqueous solutions are briefly discussed. Most of these depend on the radii of the constituent ions. A method that is independent of the radii but requires a long extrapolation from the temperatures involved in salt melts is also mentioned. A new method is developed here, independent of ionic radii, which employs the partial molar volumes of salts in their concentrated solutions (and is, therefore, limited to highly soluble salts). These are extrapolated to a virtual concentration at which all the water present is as closely packed as possible, hence no longer capable of being electrostricted. The resulting intrinsic volumes of salts are reasonable when compared to other estimates of these quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolyte Solutions, 3rd edn. Reinhold, New York (1958), p. 358 ff

    Google Scholar 

  2. Redlich, O.: Molal volumes of solutes. IV. J. Phys. Chem. 44, 619–629 (1940)

    Article  CAS  Google Scholar 

  3. Zana, R., Yeager, E.: Ultrasonic vibration potentials and their use in the determination of ionic partial molal volumes. J. Phys. Chem. 71, 521–536 (1967)

    Article  CAS  Google Scholar 

  4. Benson, S.W., Copeland, C.S.: The partial molal volumes of ions. J. Phys. Chem. 67, 1194–1197 (1963)

    Article  CAS  Google Scholar 

  5. Marcus, Y.: Ionic radii in aqueous solutions. Chem. Rev. 88, 1475–1498 (1988)

    Article  CAS  Google Scholar 

  6. Roobottom, H.K., Jenkins, H.D.B., Passmore, J., Glasser, L.: Thermochemical radii of complex ions. J. Chem. Ed. 76, 1570–1573 (1999)

    Article  CAS  Google Scholar 

  7. Mukerjee, P.: Ion-solvent interactions. I. Partial molal volumes of ions in aqueous solutions. II. Internal pressure and electrostriction of aqueous solutions of electrolytes. J. Phys. Chem. 65, 740–746 (1961)

    Article  CAS  Google Scholar 

  8. Glueckauf, E.: Molar volumes of ions. Trans. Faraday Soc. 61, 914–921 (1965)

    Article  Google Scholar 

  9. Desnoyers, J.E., Verrall, R.E., Conway, B.E.: Electrostriction in aqueous solutions of electrolytes. J. Chem. Phys. 43, 243–250 (1965)

    Article  CAS  Google Scholar 

  10. Marcus, Y.: The standard partial molar volumes of ions in solution. Part 4. Ionic volumes in water at 0 to 100 °C. J. Phys. Chem. B 113, 10285–10291 (2009)

    Article  CAS  Google Scholar 

  11. Padova, J.: Solvation approach to ion solvent interaction. J. Chem. Phys. 40, 691–694 (1964)

    Article  CAS  Google Scholar 

  12. Pedersen, T.G., Dethlefsen, C., Hvidt, A.: Volumetric properties of aqueous solutions of alkali halides. Carlsberg Res. Commun. 49, 445–455 (1984)

    Article  CAS  Google Scholar 

  13. Novotny, P., Söhnel, O.: Densities of binary aqueous solutions of 306 inorganic substances. J. Chem. Eng. Data 33, 49–55 (1988)

    Article  CAS  Google Scholar 

  14. Krumgalz, B.S., Pogorelsky, R., Pitzer, K.S.: Volumetric properties of single aqueous electrolytes from zero to saturation concentrations at 298.15 K represented by Pitzer’s ion-interaction equations. J. Phys. Chem. Ref. Data 25, 663–689 (1996)

    Article  CAS  Google Scholar 

  15. Lide, D.R. (ed.) Handbook of Chemistry and Physics, 82nd edn. CRC, Baton Rouge (2001–2002)

    Google Scholar 

  16. Klemm, A.: In: Blander, M. (ed.) Molten Salts. Wiley-Interscience, New York (1964), pp. 564, 574

    Google Scholar 

  17. Campbell, A.M., Williams, D.F.: The thermodynamics and conductivities of molten salts and their mixtures. II. Densities, molar volumes, viscosities, and surface tensions of molten lithium chlorate, with small additions of water and other substances. Can. J. Chem. 42, 1778–1787 (1964)

    Article  CAS  Google Scholar 

  18. Dulieu, P., Claes, P.: Effect of temperature on the electrical conductivity of molten potassium thiocyanate. Bull. Soc. Chim. Belges 82, 639–643 (1973)

    CAS  Google Scholar 

  19. Hazelwood, F.J., Rhodes, E., Ubbelohde, A.D.: Melting mechanisms and melt properties of alkali acetates. Trans. Faraday Soc. 62, 3101–3113 (1966)

    Article  Google Scholar 

  20. Bil’chenko, M.N., Dmitruk, B.F., Zarubitskii, O.G.: Viscosity and density of the melts in the systems NaOH-NaNO2 and KOH-KNO2. Ukr. Khim. Zh. 60, 480–482 (1994)

    Google Scholar 

  21. Shirai, T., Ishibasi, T.: Studies on fused ammonium nitrate. II. Specific volume of fused ammonium nitrate and its solutions of salts. In: Sci. papers Coll. Gen. Educ., Univ. Tokyo, vol. 7, pp. 53–60 (1957)

  22. Krestov, G.A.: Temperature coefficients of ionic radii with inert gas electron configuration. Zh. Fiz. Khim. 41, 1272–1281 (1967)

    CAS  Google Scholar 

  23. Hirata, F., Arakawa, K.: Molar volume of ions. Bull. Chem. Soc. Jpn. 46, 3367–3369 (1973)

    Article  CAS  Google Scholar 

  24. Akitt, J.W.: Limiting single-ion molar volumes. Intrinsic volumes as a function of the solvent parameters. J. Chem. Soc. Faraday Trans. 1 76, 2259–2284 (1980)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhak Marcus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcus, Y. On the Intrinsic Volumes of Ions in Aqueous Solutions. J Solution Chem 39, 1031–1038 (2010). https://doi.org/10.1007/s10953-010-9553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9553-6

Keywords

Navigation