Skip to main content
Log in

A Hydroxyl-bridged Dinuclear Copper Complex Having Planar Structure Shows Efficient DNA Cleavage Activity in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A new dinuclear copper(II) complex, [Cu(DPA)OH]2⋅2ClO4(Cu2-DPA2, DPA = di(pyridin-2-yl)amine), was synthesized and structurally characterized. The complex crystallized in a triclinic P-1 space group, taking on a slightly distorted tetragonal geometry. Both Cu(II) in Cu2-DPA2 are bridged by two hydroxyl groups with a distance of 2.938 Å. The whole molecule is nearly co-planar with the exception of the bridging hydroxyl groups. Complex Cu2-DPA2 can cleave efficiently supercoiled pBR322 DNA into its nicked and linearized forms at micromolar concentrations in the presence of ascorbate near physiological conditions. The presence of standard radical scavengers does not have any apparent effect on the cleavage efficiency, suggesting that Cu(II) bound oxygen intermediates rather than freely diffusible hydroxyl radicals may act as the active species in the DNA scission. Comparison of the cleavage reactivity of Cu2-DPA2 with that of mononuclear analogue Cu-DPA and trinuclear Cu3-L demonstrates that the synergistic effect between Cu(II) centers in Cu2-DPA2 is crucial for the DNA cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oivanen, M., Kuusela, S., Lonnberg, H.: Kinetics and mechanisms for the cleavage and isomerization of the phosphodiester bonds of RNA by Brønsted acids and bases. Chem. Rev. 98, 961–990 (1998). doi:10.1021/cr960425x

    Article  CAS  Google Scholar 

  2. Pratviel, G., Bernadou, J., Meunier, B.: Carbon-hydrogen bonds of DNA sugar units as targets for chemical nucleases and drugs. Angew. Chem. Int. Ed. Engl. 34, 746–769 (1995). doi:10.1002/anie.199507461

    Article  CAS  Google Scholar 

  3. Molenveld, P., Engbersen, J.F.J., Reinhoudt, D.N.: Dinuclear metallo-phosphodiesterase models: application of calix[4]arenes as molecular scaffolds. Chem. Soc. Rev. 29, 75–86 (2000). doi:10.1039/a804295k

    Article  CAS  Google Scholar 

  4. Parkin, G.: Synthetic analogues relevant to the structure and function of zinc enzymes. Chem. Rev. 104, 699–767 (2004). doi:10.1021/cr0206263

    Article  CAS  Google Scholar 

  5. Sigman, D.S.: In: Meunier, B. (ed.) DNA and RNA Cleavers and Chemotherapy of Cancer and Viral Diseases, p. 119. Kluwer, Dordrecht (1996)

    Google Scholar 

  6. Liu, C.-L., Wang, M., Zhang, T.-L., Sun, H.-Z.: DNA hydrolysis promoted by di- and multi-nuclear metal complexes. Coord. Chem. Rev. 248, 147–168 (2004). doi:10.1016/j.cct.2003.11.002

    Article  CAS  Google Scholar 

  7. Pyle, A.M., Barton, J.K.: In: Lippard, S.J. (ed.) Progress in Inorganic Chemistry, vol. 38, p. 413. Wiley, New York (1990)

    Chapter  Google Scholar 

  8. Klein, C.B., Frenkel, K., Costa, M.: The role of oxidative processes in metal carcinogenesis. Chem. Res. Toxicol. 4, 592–604 (1991). doi:10.1021/tx00024a001

    Article  CAS  Google Scholar 

  9. Cowan, J.A.: Chemical nucleases. Curr. Opin. Chem. Biol. 5, 634–642 (2001). doi:10.1016/S1367-5931(01)00259-9

    Article  CAS  Google Scholar 

  10. Mancin, F., Scrimin, P., Tecilla, P., Tonellato, U.: Artificial metallonucleases. Chem. Commun. (Camb.), 2540–2548 (2005). doi:10.1039/b418164f

  11. Thyagarajan, S., Murthy, N.N., Narducci Sarjeant, A.A., Karlin, K.D., Rokita, S.E.: Selective DNA strand scission with binuclear copper complexes: implications for an active Cu2–O2 species. J. Am. Chem. Soc. 128, 7003–7008 (2006). doi:10.1021/ja061014t

    Article  CAS  Google Scholar 

  12. Gonzalez-Alvarez, M., Alzuet, G., Borras, J., Macias, B., Castineiras, A.: Oxidative cleavage of DNA by a new ferromagnetic linear trinuclear copper(II) complex in the presence of H2O2/sodium ascorbate. Inorg. Chem. 42, 2992–2998 (2003). doi:10.1021/ic020611n

    Article  CAS  Google Scholar 

  13. Humphreys, K.J., Johnson, A.E., Karlin, K.D., Rokita, S.E.: Oxidative strand scission of nucleic acids by a multinuclear copper(II) complex. J. Biol. Inorg. Chem. 7, 835–842 (2002). doi:10.1007/s00775-002-0369-8

    Article  CAS  Google Scholar 

  14. Pogozelski, W.K., Tullius, T.D.: Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar moiety. Chem. Rev. 98, 1089–1108 (1998). doi:10.1021/cr960437i

    Article  CAS  Google Scholar 

  15. Burrows, C.J., Muller, J.G.: Oxidative nucleobase modifications leading to strand scission. Chem. Rev. 98, 1109–1152 (1998). doi:10.1021/cr960421s

    Article  CAS  Google Scholar 

  16. An, Y., Tong, M.-L., Ji, L.-N., Mao, Z.-W.: Double-strand DNA cleavage by copper complexes of 2,2′-dipyridyl with electropositive pendants. Dalton Trans. 2066–2071 (2006). doi:10.1039/b516132k

  17. Zhao, Y.M., Zhu, J.H., He, W.J., Yang, Z., Zhu, Y.G., Li, Y.Z., Zhang, J.F., Guo, Z.J.: Oxidative DNA cleavage promoted by multinuclear copper complexes: Activity dependence on the complex structure. Chem. Eur. J. 12, 6621–6629 (2006). doi:10.1002/chem.200600044

    Article  CAS  Google Scholar 

  18. Selmeczi, K., Giorgi, M., Speier, G., Farkas, E., Réglier, M.: Mono-versus binuclear copper(II) complexes in phosphodiester hydrolysis. Eur. J. Inorg. Chem. 5, 1022–1031 (2006). doi:10.1002/ejic.200500595

    Article  CAS  Google Scholar 

  19. Childs, L.J., Malina, J., Rolfsnes, B.E., Pascu, M., Prieto, M.L., Broome, M.L., Rodger, P.M., Sletten, E., Moreno, V., Rodger, A., Hannon, M.J.: A DNA-binding copper(I) metallosupramolecular cylinder that acts as an artificial nuclease. Chem. Eur. J. 12, 4919–4927 (2006). doi:10.1002/chem.200600060

    Article  CAS  Google Scholar 

  20. Jin, Y., Lewis, M.A., Gokhale, N.H., Long, E.C., Cowan, J.A.: Influence of stereochemistry and redox potentials on the single- and double-strand DNA cleavage efficiency of Cu(II) center dot and Ni(II) center dot Lys-Gly-His-derived ATCUN metallopeptides. J. Am. Chem. Soc. 129, 8353–8361 (2007). doi:10.1021/ja0705083

    Article  CAS  Google Scholar 

  21. da Silveira, V.C., Luz, J.S., Oliveira, C.C., Graziani, I., Ciriolo, M.R., da Costa Ferreira, A.M.: Double-strand DNA cleavage induced by oxindole-Schiff base copper(II) complexes with potential antitumor activity. J. Inorg. Biochem. 102, 1090–1103 (2008). doi:10.1016/j.jinorgbio.2007.12.033

    Article  CAS  Google Scholar 

  22. Lu, Z.L., Liu, T., Neverov, A.A., Brown, R.S.: Rapid three-step cleavage of RNA and DNA model systems promoted by a dinuclear Cu(II) complex in methanol. Energetic origins of the catalytic efficacy. J. Am. Chem. Soc. 129, 11642–11652 (2007). doi:10.1021/ja073780l

    Article  CAS  Google Scholar 

  23. García-Giménez, J.L., Alzuet, G., González-Álvarez, M., Castiñeiras, A., Liu-González, M., Borrás, J.: A dinuclear copper(II) complex with adeninate bridge ligands and prominent DNA cleavage activity. Structural and spectroscopic characterization and magnetic properties. Inorg. Chem. 46, 7178–7188 (2007). doi:10.1021/ic700751j

    Article  CAS  Google Scholar 

  24. Maheswari, P.U., van der Ster, M., Smulders, S., Barends, S., van Wezel, G.P., Massera, C., Roy, S., den Dulk, H., Gamez, P., Reedijk, J.: Structure, cytotoxicity, and DNA-cleavage properties of the complex CuII(pbt)Br2. Inorg. Chem. 47, 3719–3727 (2008). doi:10.1021/ic702306f

    Article  CAS  Google Scholar 

  25. Humphreys, K.J., Karlin, K.D., Rokita, S.E.: Efficient and specific strand scission of DNA by a dinuclear copper complex: Comparative reactivity of complexes with linked tris(2-pyridylmethyl)amine moieties. J. Am. Chem. Soc. 124, 6009–6019 (2002). doi:10.1021/ja020039z

    Article  CAS  Google Scholar 

  26. Humphreys, K.J., Karlin, K.D., Rokita, S.E.: Targeted strand scission of DNA substrates by a tricopper(II) coordination complex. J. Am. Chem. Soc. 124, 8055–8066 (2002). doi:10.1021/ja012539i

    Article  CAS  Google Scholar 

  27. Kirin, S.I., Happel, C.M., Hrubanova, S., Weyhermüller, T., Klein, C., Metzler-Nolte, N.: Synthesis, structure and comparison of the DNA cleavage ability of metal complexes M(II)L with the N-(2-ethoxyethanol)-bis(2-picolyl)amine ligand L (M = Co, Ni, Cu and Zn). Dalton Trans. 1201–1207 (2004). doi:10.1039/b313634e

  28. Tu, C., Shao, Y., Gan, N., Xu, Q., Guo, Z.: Oxidative DNA strand scission induced by a trinuclear copper(II) complex. Inorg. Chem. 43, 4761–4766 (2004). doi:10.1021/ic049731g

    Article  CAS  Google Scholar 

  29. Chen, J.W., Wang, X.Y., Shao, Y., Zhu, J.H., Zhu, Y.G., Li, Y.Z., Xu, Q., Guo, Z.J.: A trinuclear copper(II) complex of 2,4,6-tris(di-2-pyridylamine)-1,3,5-triazine shows prominent DNA cleavage activity. Inorg. Chem. 46, 3306–3312 (2007). doi:10.1021/ic0614162

    Article  CAS  Google Scholar 

  30. Marmur, J.: A procedure for the isolation of deoxyribonucleic acids from microorganisms. J. Mol. Biol. 3, 208–218 (1961)

    Article  CAS  Google Scholar 

  31. Reichmann, M.E., Rice, S.A., Thomas, C.A., Doty, P.: A further examination of the molecular weight and size of sesoxypentose nucleic acid. J. Am. Chem. Soc. 76, 3047–3053 (1954). doi:10.1021/ja01640a067

    Article  CAS  Google Scholar 

  32. Yergey, J.A.: A general approach to calculating isotopic distributions for mass spectrometry. Int. J. Mass Spectrom. Ion Phys. 52, 337–349 (1983). doi:10.1016/0020-7381(83)85053-0

    Article  CAS  Google Scholar 

  33. Sheldrick, G.M.: SHELXTL, v5 Reference Manual, Siemens Analytical X-Ray Systems. Madison, WI (1996)

  34. Wilson, A.J.: International Table for X-Ray Crystallography, Vol. C. Kluwer, Dordrecht (1992). Tables 6.1.1.4 (p. 500) and 4.2.6.8 (p. 219), respectively

    Google Scholar 

  35. Bernadou, J., Prativiel, G., Bennis, F., Girardet, M., Meunier, B.: Potassium monopersulfate and a water-soluble manganese porphyrin complex, [Mn(TMPyP)](OAc)5, as an efficient reagent for the oxidative cleavage of DNA. Biochemistry 28, 7268–7275 (1989). doi:10.1021/bi00444a019

    Article  CAS  Google Scholar 

  36. Wu, L.P., Keniry, M.E., Hathaway, B.J.: Copper(I) reoxygenation products: the structures of di-μ-hydroxy-bis(di-2-pyridylamine)bis(tetrafluoroborato) dicopper(II) and μ-aqua-di-μ-hydroxy-bis(di-2-pyridylamine)dicopper(II) dichloride dehydrate. Acta Crystallogr. C 48, 35–40 (1992). doi:10.1107/S0108270191008703

    Google Scholar 

  37. Youngme, S., Somjitsripunya, W., Chinnakali, K., Chantrapromma, S., Fun, H.K.: The crystal and molecular structures of di-μ-hydroxy-bis(di-2-pyridylamine)dinitratodicopper(II) and aqua-μ-formato-triformato-bis(di-2-pyridylamine)dicopper(II) monohydrate. Polyhedron 18, 857–862 (1999). doi:10.1016/S0277-5387(98)00370-2

    Article  CAS  Google Scholar 

  38. Youngme, S., van Albada, G.A., Roubeau, O., Pakawatchai, C., Chaichit, N., Reedijk, J.: Synthesis, crystal structures and magnetism of planar and roof-shaped hydroxo-bridged dinuclear copper(II) compounds with di-2-pyridylamine as a ligand. Inorg. Chim. Acta 342, 48–58 (2003). doi:10.1016/S0020-1693(02)01069-1

    Article  CAS  Google Scholar 

  39. Waring, M.J.: Complex formation between ethidium bromide and nucleic acids. J. Mol. Biol. 13, 269–282 (1965)

    Article  CAS  Google Scholar 

  40. Baguley, B.C., Le Bret, M.: Quenching of DNA-ethidium fluorescence by amsacrine and other antitumor agents: a possible electron-transfer effect. Biochemistry 23, 937–943 (1984). doi:10.1021/bi00300a022

    Article  CAS  Google Scholar 

  41. Selvakumar, B., Rajendiran, V., Uma Maheswari, P., Stoeckli-Evans, H., Palaniandavar, M.: Structures, spectra, and DNA-binding properties of mixed ligand copper(II) complexes of iminodiacetic acid: The novel role of diimine co-ligands on DNA conformation and hydrolytic and oxidative double strand DNA cleavage. J. Inorg. Biochem. 100, 316–330 (2006). doi:10.1016/j.jinorgbio.2005.11.018

    Article  CAS  Google Scholar 

  42. Kumar, C.V., Barton, J.K., Turro, N.J.: Photophysics of ruthenium complexes bound to double helical DNA. J. Am. Chem. Soc. 107, 5518–5523 (1985). doi:10.1021/ja00305a032

    Article  CAS  Google Scholar 

  43. Mazumder, A., Sutton, C.L., Sigman, D.S.: 1,10-Phenanthroline-linked Escherichia coli Trp repressor as a site-specific scission reagent. Metal ion requirement. Inorg. Chem. 32, 3516–3520 (1993). doi:10.1021/ic00068a022

    Article  CAS  Google Scholar 

  44. Sigman, D.S., Bruice, T.W., Mazumder, A., Sutton, C.L.: Targeted chemical nucleases. Acc. Chem. Res. 26, 98–104 (1993). doi:10.1021/ar00027a004

    Article  CAS  Google Scholar 

  45. Suzuki, M., Furutachi, H., Ohkawa, H.: Bimetallic dioxygen complexes derived from ‘end-off’ compartmental ligands. Coord. Chem. Rev. 200–202, 105–129 (2000). doi:10.1016/S0010-8545(00)00323-4

    Article  Google Scholar 

  46. Morrow, J.R., Iranzo, O.: Synthetic metallonucleases for RNA cleavage. Curr. Opin. Chem. Biol. 8, 192–200 (2004). doi:10.1016/j.cbpa.2004.02.006

    Article  CAS  Google Scholar 

  47. Zhu, Q., Lian, Y.-X., Thyagarajan, S., Rokita, S.E., Karlin, K.D., Blough, N.V.: Hydrogen peroxide and dioxygen activation by dinuclear copper complexes in aqueous solution: hydroxyl radical production initiated by internal electron transfer. J. Am. Chem. Soc. 130, 6304–6305 (2008). doi:10.1021/ja800080z

    Article  CAS  Google Scholar 

  48. Pope, L.M., Reich, K.A., Graham, D.R., Sigman, D.S.: Products of DNA cleavage by the 1,10-phenanthroline-copper complex. Inhibitors of Escherichia coli DNA polymerase I. J. Biol. Chem. 257, 12121–12128 (1982)

    CAS  Google Scholar 

  49. Blackburn, N.J., Rhames, F.C., Ralle, M., Jaron, S.: Major changes in copper coordination accompany reduction of peptidylglycine monooxygenase: implications for electron transfer and the catalytic mechanism. J. Biol. Inorg. Chem. 5, 341–353 (2000). doi:10.1007/PL00010663

    Article  CAS  Google Scholar 

  50. Zhu, Q., Lian, Y., Thyagarajan, S., Rokita, S.E., Karlin, K.D., Blough, N.V.: Hydrogen peroxide and dioxygen activation by dinuclear copper complexes in aqueous solution: hydroxyl radical production initiated by internal electron transfer. J. Am. Chem. Soc. 130, 6304–6305 (2008). doi:10.1021/ja800080z

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwen Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, Y., Chen, J. A Hydroxyl-bridged Dinuclear Copper Complex Having Planar Structure Shows Efficient DNA Cleavage Activity in Aqueous Solution. J Solution Chem 38, 1357–1367 (2009). https://doi.org/10.1007/s10953-009-9457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9457-5

Keywords

Navigation