Skip to main content
Log in

Complexation Studies of Pyridyl Sulfonamide Ligands for Sensing Zinc and Copper Ions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Ligand protonation and stepwise dissociation constants, formation constants and speciation of four pyridyl sulfonamide ligands (Congreeve et al., New J. Chem. 27:98–106, 2003) were assessed, using potentiometric and UV/Visible spectrophotometric pH titrations (in 80% MeOH − 20% H2O). The suitability of these ligands as Cu(II) and Zn(II) sensors for physiological applications was assessed. Two ligands L1 and L4 were p-toluenesulfonamide derivatives while L2 and L3 were triflurosulfonamide derivatives. Additionally L3 and L4 were appended with α-methyl groups. The most stable complex was formed by L1 with Cu(II) owing to the fact that this complex was square planar (log 10K 1=12.15±0.004 and log 10β 2=15.42±0.006). The rest of the complexes invariably formed distorted tetrahedron geometry and complexation was weaker. Speciation diagrams show the effect of ligand to metal concentration, revealing that the L2 and L3 ligands are the most suitable for forming ML2 complexes at physiological pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Congreeve, A., Kataky, R., Knell, M., Parker, D., Puschmann, H., Senanayake, K., Wylie, L.: Examination of cobalt, nickel, copper and zinc (II) complex geometry and binding affinity in aqueous media using simple pyridylsulfonamide ligands. New J. Chem. 27, 98–106 (2003)

    Article  Google Scholar 

  2. Rossi, L.M., Neves, A., Botoluzzi, A.J., Hörner, R., Szpoganicz, B., Terenzi, H., Mangrich, A.S., Pereira-Maia, E., Castellano, E.E., Haase, W.: Synthesis, structure and properties of unsymmetrical μ-alkoxo-dicopper(II) complexes: biological relevance to phosphodiester and DNA cleavage and cytotoxic activity. Inorg. Chim. Acta 358, 1807–1822 (2005)

    Article  CAS  Google Scholar 

  3. Daniel, K.G., Gupta, P., Harbach, R.H., Guida, W.C., Dou, Q.P.: Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. Biochem. Pharmacol. 67, 1139–1151 (2004)

    Article  CAS  Google Scholar 

  4. Choi, D.W., Koh, J.Y.: Zinc and brain injury. Ann. Rev. Neurosci. 21, 347–375 (1998)

    Article  CAS  Google Scholar 

  5. Mitic, N., Smith, S.J., Neves, A., Guddat, L.W., Gahan, L.R., Schenk, G.: The catalytic mechanisms of binuclear metallohydrolases. Chem. Rev. 106, 3338–3363 (2006)

    Article  CAS  Google Scholar 

  6. Kimber, M.C., Mahadevan, I.B., Lincoln, S.F., Ward, A.D., Tiekink, E.R.T.: The synthesis and fluorescent properties of analogues of the zinc(ii) specific fluorophore zinquin ester. J. Org. Chem. 65, 8204–8209 (2000)

    Article  CAS  Google Scholar 

  7. Nasir, M.S., Fahrni, C.J., Suhy, D.A., Kolodsick, K.J., Singer, C.P., O’Halloran, T.V.: The chemical cell biology of zinc: structure and intracellular fluorescence of a zinc-quinolinesulfonamide complex. J. Biol. Inorg. Chem. 4, 775–783 (1999)

    Article  CAS  Google Scholar 

  8. Hendrickson, K.M., Geue, J.P., Wyness, O., Lincoln, S.F., Ward, A.D.: Coordination and fluorescence of the intracellular Zn2+ probe [2-methyl-8-(4-toluenesulfonamido)-6-quinolyloxy]acetic acid (zinquin a) in ternary Zn2+ complexes. J. Am. Chem. Soc. 125, 3889–3895 (2003)

    Article  CAS  Google Scholar 

  9. Fahrrni, C.J., O’Halloran, T.V.: Aqueous coordination chemistry of quinoline–based fluorescence probes for the biological chemistry of zinc. J. Am. Chem. Soc. 121, 11448–11458 (1999)

    Article  Google Scholar 

  10. Nakamura, H., Yoshida, T., Todoka, M.: Syntheses and chelating properties of sulfonamidoquinolines. Bull. Chem. Soc. Jpn. 57, 2839–2846 (1984)

    Article  CAS  Google Scholar 

  11. Congreeve, A.: Responsive lanthanide complexes for metal ion sensing. Doctoral Thesis, Department of Chemistry, University of Durham (2004)

  12. Gans, P., Sabatini, A., Vacca, A.: SUPERQUAD: an improved general program for computation of formation constants from potentiometric data. J. Chem. Soc. Dalton Trans. 1195–1200 (1985)

  13. Martell, A.E., Motekaitis, R.J.: Determination and Use of Stability Constants. VCH Publishers Inc., Cambridge (1992)

    Google Scholar 

  14. Rondinini, S., Mussini, P.R., Mussini, T.: pH measurements in non-aqueous and mixed solvents: Predicting pH(PS) of potassium hydrogen phthalate for alcohol-water mixtures (Technical Report). Pure Appl. Chem. 70, 1419–1422 (1998)

    Article  CAS  Google Scholar 

  15. Marcus, Y., Mussini, T., Izutsu, K.: The extrapolation of EMF data to infinite dilution in non-aqueous and mixed solvents. Pure Appl. Chem. 63, 1647–1658 (1991)

    Article  Google Scholar 

  16. Hakansson, K., Liljas, A.: The structure of a complex between carbonic anhydrase II and a new inhibitor, trifluoromethane sulphonamide. FEBS Lett. 350, 319–322 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Kataky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kataky, R., Knell, M.A. Complexation Studies of Pyridyl Sulfonamide Ligands for Sensing Zinc and Copper Ions. J Solution Chem 38, 1483–1492 (2009). https://doi.org/10.1007/s10953-009-9456-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9456-6

Keywords

Navigation